Bktp-omsk.ru

Делаем сами
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности строения кристаллической решетки металлов металлический блеск

Особенности строения кристаллической решетки металлов металлический блеск

Найдите по таблице два металла с гексагональной и гранецентрированной упаковкой с близкими температурами плавления (максимальное отличие 8 градусов). Посчитайте отношение их коэффициентов линейного расширения. Значение запишите с точностью до второго знака после запятой.

Прочитайте текст и выполните задания 16—18.

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет кристаллическое строение металлов. К специфическим свойствам рассматриваемых веществ относят следующие:

1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым серебристо-белым цветом. Лишь некоторые (золото, медь, сплавы) отличаются.

2. Ковкость и пластичность — способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.

3. Электропроводность и теплопроводность — одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Связь между коэффициентами линейного расширения,

температурами плавления металлов и симметрией

Кристалл — это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки.

Сама элементарная ячейка – это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность – в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

1. Объемно-центрированная кубическая.

2. Гексагональная плотноупакованная.

3. Гранецентрированная кубическая.

В зависимости от типа кристаллической решетки меняется коэффициент линейного расширения, а также температура плавления металлов. При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение. Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Он приведен в четвертом столбце таблицы. Коэффициент линейного расширения относят к характеристикам теплового расширения материала.

К какому типу решетки принадлежат золото и медь?

Золото и медь принадлежат к гранецентрированному кубическому типу решетки.

Положение металлов в периодической системе. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов

Разделы: Химия

Цель: Опираясь на ранее полученные знания, подвести обучающихся к пониманию представлений о металлах как химических элементах и простых веществах.

1) Познакомить обучающихся со строением и общими свойствами металлов, исходя из их положения в периодической системе и строения атомов.
2) Дать понятие о металлической связи и металлической кристаллической решетке. Добавить, обобщить и углубить знания о физических
свойствах металлов.

1) Расширить и углубить знания учащихся о роли металлов в организме, значении в жизнедеятельности человека, показать разнообразие их свойств.
2) Продолжить формирование мировоззренческих взглядов (умения устанавливать причинно-следственные связи между строением и
свойствами металлов, доказывать переход количественных изменений в качественные).
3) Акцентировать внимание обучающихся на возможности интеграции курсов химии, литературы и истории, развивать представления о познаваемости мира.
4) Прививать навыки самостоятельной работы, учить четко и грамотно выражать свои мысли. Уметь слушать своего товарища.

1) Научить работать с дополнительной литературой и другими источниками информации, готовить доклады,
2) Выступать перед аудиторией,
3) Формировать критическое мышление, умение анализировать, выделять главное, обобщать и делать выводы.

Тип урока: Урок усвоения новых знаний с мультимедийным сопровождением.

Оборудование. Компьютер, проектор, экран; учебная презентация по данной теме, выполненная на компьютере в программе Power Point, созданная учителем, коллекции “Металлы и сплавы”; шаростержневые модели кристаллической решетки металлов железа, магния, меди; таблицы: “Изменение атомного радиуса в периоде, группе”, “Строение металлической кристаллической решетки”, учебник химии 9 класс автор О.С. Габриелян 2010 год.

I. Ориентировочно-мотивационный этап.

Учитель: – Здравствуйте, ребята. Я рада вас видеть на своем уроке здоровыми и бодрыми. Я думаю, что и у вас прекрасное настроение как у ромашки на слайде презентации. Слайд 1.

А сейчас обратите внимание на лотки, что стоят на ваших столах. В них образцы веществ. Причем, предложенные вашему вниманию вещества, против обыкновения, не подписаны. Ваша задача состоит в том, чтобы распределить эти вещества по каким-то признакам, то есть как-то их проклассифицировать. Признаки выберите сами.

Учитель: – Какие признаки? (Твердость, металлический блеск.)

Учитель: – На какие группы распределились вещества? (Металлы и неметаллы.)

Учитель: – Каких веществ больше?

В настоящее время известно более 80 металлов, точно сосчитаете дома. Чем они отличаются друг от друга?

Учитель: – Они отличаются друг от друга свойствами: цветом, блеском, твердостью.

Учитель: Как вы думаете, что мы сегодня будем изучать? Металлы. Да, мы начинаем изучение большой темы “Металлы” (на экране проецируем тему урока) Слайд 2.

Презентацию можно получить у автора статьи.

Записываем дату и тему урока в тетради.

Эпиграф нашего урока. “Мощь и сила науки – во множестве фактов, цель – в обобщении этого множества”. Д.И.Менделеев. Слайд 3

“Внимательно осмотритесь вокруг. Где бы вы ни были: дома или в школе, на улице или в транспорте – вы увидите, какое множество металлов трудится вокруг нас и для нас.Слайд 4.

Учитель: Основываясь на собственный опыт, знания из курса физики, биологии, литературы давайте вспомним, что мы знаем о металлах? Поделитесь своими знаниями. (Беседа с классом.)

Учитель: Что мы должны узнать?

Цели: (Слайд 5.)

Учитель: Чтобы ответить на эти вопросы мы должны с вами выполнить большую работу по изучению нового материала и приобретению знаний.

“Свойства веществ зависят от строения”. Сегодня эту зависимость мы рассматриваем применительно к металлам. Давайте проследим причинно-следственную связь между строением атома, химической связью и физическими свойствами.

Строение атома – металлическая связь – металлическая кристаллическая решетка – физические свойства – практическое применение

Учитель: – Ответьте на следующие вопросы:

1) Где расположены элементы– металлы? Слайд 6.
2) Какое место занимают металлы в периодической системе химических элементов Д.И.Менделеева?

В периодической системе химических элементов каждый период, кроме первого, начинается с активного металла. Эти элементы образуют главную подгруппу I группы и называются щелочными металлами. Свое название они получили от названия соответствующих им гидроксидов, хорошо растворимых в воде, – щелочей.

Следующие за щелочными металлами элементы, составляющие главную подгруппу II группы, также являются металлами. Из этих металлов кальций, стронций, барий и радий называют щелочноземельными металлами. Такое название они получили потому, что их оксиды, которые алхимики называли “землями”, при растворении в воде образуют щелочи.

Далее к металлам относят элементы главных подгрупп: III группы, исключая бор; IV группы – германий, олово, свинец; V группы – сурьму и висмут; VI группы – полоний.

Что касается элементов побочных подгрупп, то все они – металлы. Таким образом, если в периодической системе провести диагональ от В к Астату через элементы главных подгрупп, то по диагонали и над ней будут располагаться неметаллы, а под ней – металлы. В периодах: в малых – металлы расположены в начале, в больших – в четных рядах и начале нечетных. Слайд 7.

Из положения металлов в периодической системе можно определить и особенности строения их атомов. Слайд 8.

1) На внешнем энергетическом уровне – 1–3 электрона.
2) У металлов сравнительно большой радиус атома
3) В периоде восстановительные свойства уменьшаются, т.к. увеличивается заряд ядра, число электронов на внешнем слое.
4) В группе в главной подгруппе восстановительные свойства увеличиваются, т.к. возрастает радиус атома.

Учитель: Давайте распишем электронное строение атомов металлов Na, Ca, Al (3 обучающихся возле доски.) Вместе проверяем даем оценку.

Загадочная пауза Слайд 9. (Загадки про металлы.)

Учитель: Атомы – металлы образуют простые вещества, соединяясь посредством химической связи. Какой? Слайд 10.

Учитель: Что такое металлическая связь? Связь в металлах и сплавах между атом – ионами посредством обобществленных электронов называется металлической. Веществам с металлической связью присущи металлические кристаллические решетки. Свойства металлов обусловлены строением их кристаллов. В узлах металлических кристаллических решеток располагаются атомы и ионы металлов, связанные посредством обобществленных электронов, электронов, которые оторвались от конкретных атомов и стали принадлежать всему кристаллу. Эти электроны компенсируют силы электростатического отталкивания между положительными ионами, связывают их, обеспечивают устойчивость металлической решетки. Такой тип связи называется металлической. Она обусловливает все важнейшие физические свойства металлов. Слайд 11.

Учитель: У меня на столе представлены кристаллические решетки металлов магния, меди и железа дайте вместе рассмотрим строение кристаллических решеток этих металлов. (Три обучающихся возле доски рассказывают о строении предложенных решеток металлов.)

Физкультминутка.

Учитель: Какими физическими свойствами обладают металлы? Слайд 11

Учитель подчеркивает, что физические свойства металлов определяются их строением.

Индивидуальные задания обучающимся. По материалу параграфа 6 заполнить таблицу

Физическое свойство металловЧем оно обусловленоПримеры
Пластичность
Электрическая проводимость
Металлический блеск

Остальные обучающиеся, для изучения физических свойств металлов по материалу параграфа 6 (страница 30–32) делятся на 3 группы по свойствам, готовятся, пишут свою часть схемы, выходят к доске приклеивают свои листочки и отвечают. Класс может задавать вопросы. Обучающиеся 4 группы готовят и задают вопросы остальным обучающимся групп.

Заполнение схемы по ходу изучения нового материала (по выступлениям обучающихся от каждой группы).

После заполнения схемы возвращаемся к образцам металлов в лотках на столах обучающихся и выполняем Лабораторный опыт “Ознакомление с образцами металлов” на карточках подписаны названия металлов (железо, цинк, олово, алюминий, свинец, серебро).

Физические свойства металлов.

Пластичность. Слайд 13. Металлы обладают пластичностью, ковкостью и прочностью. Благодаря свободному перемещению электронов по всему кристаллу разрыв связей не происходит, т. к. отдельные слои в кристалле могут смещаться относительно друг друга. Это придает металлам пластичность — способность изменять свою форму без разрыва химических связей. Металлы, обладающие высокой пластичностью — золото, серебро, медь, олово, железо, алюминий.

Просмотр фрагмента “Кузнечное дело” с диска “Неорганическая химия”.

Электропроводность. Лучшие проводники электричества – серебро и медь, худшие – марганец, свинец и ртуть. Металлы обладают электрической проводимостью благодаря наличию свободных электронов или электронного “газа”. Хаотически движущиеся в металле электроны под воздействием приложенного электрического напряжения приобретают направленное движение, в результате чего возникает электрический ток.

Теплопроводность металлов, как правило, соответствует электропроводности. Она обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющими ионами и атомами, обмениваются с ними энергией. Поэтому происходит быстрое выравнивание температуры по всему куску металла. Лучшая проводимость у серебра, меди, худшая — у висмута, ртути.

Для всех металлов характерен металлический блеск: серый цвет или непрозразрачность. Свободные электроны, заполняющие межатомное пространство в решетке, отражают световые лучи, поэтому металлы имеют металлический блеск (серебристо-белый и серый). Только золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют желтый и оранжевый цвет. Самые блестящие металлы — ртуть, серебро.

Читать еще:  Клапаны 19ч21бр обратные поворотные межфланцевые

Плотность. Слайд 14. Все металлы делятся на легкие (с плотностью до 5г/см 3 ) и тяжелые (с плотностью больше 5г/см 3 ). Легкие: Li, Na, K, Mg, Al Тяжелые: Zn, Cu, Sn, Ag, Au

Температура плавления. Слайд 15, 16.

Металлы делятся на легкоплавкие и тугоплавкие.

Твердость. Все металлы, кроме ртути, твердые. Но это свойство различно у каждого металла. Слайд 17.

Самые мягкие металлы — натрий, калий, индий, их можно резать ножом самый твердый металл — хром, царапает стекло. Рассмотреть образцы щелочных и щелочноземельных металлов.

С представителями некоторых металлов мы сейчас познакомимся

Вступление к сообщениям обучающихся “Заморочки из бочки”

– Алхимики старались его получить используя философский камень для того, чтобы править миром и вечно жить;
– Из-за этого металла пролилось много крови;
– Его используют в ювелирной промышленности) Это – Золото. (Сообщение про золото. Слайд 18–27.)

Вступление к сообщению обучающегося о меди “МАСКА, Я ТЕБЯ ЗНАЮ!” Звон колокольчика под тканью.

Следующий металл, о котором мы поговорим, – медь. Медь называют музыкальным металлом. Почему, сейчас мы узнаем. Слайд 28. Когда на Русь нападали полчища врагов, когда нужно было собрать народ на важные собрания, ударяли в колокола. Давайте послушаем запись звонов ростовских колоколов. В народе говорят, что колокольный звон делает человека добрее, справедливее. Все злое, нехорошее от него уходит. Искусство колокольных дел мастеров осталось составной частью национальной культуры. И поныне остается загадкой, как удалось нашим предкам без измерительных приборов и точного анализа сплавов создать “стозвонные” колокола – каждый со своим звоном (прослушивание звона колоколов). После Слайда 31.

Сегодня медь широко используется в электротехнике и приборостроении. Но давайте рассмотрим, как и где применяли раньше медь и ее значение сегодня. Слайд 32–36.

Вступление к сообщению про железо (загадка – стихотворение).

Важнейший, древний элемент.
В тяжелой индустрии главный,
Знаком с ним школьник и студент.
Родился в огненной стихии,
Расплав его течет рекой.
Важнее нет в металлургии –
Он нужен всей стране родной.

Сообщение про железо. Слайд 37–42

А теперь, внимание! Знакомимся с самыми, самыми металлами. Слайд 43.

Проверка знаний по результатам изучения нового материала (тест на компьютере) обмениваемся работами и проверяем с выставлением оценок по ключу

Подведение итогов. “Свойства веществ зависят от строения”. Сегодня эту зависимость мы рассмотрели применительно к металлам. Проследили причинно-следственную связь между строением атома, химической связью и физическими свойствами.

Выставление оценок за урок.

Проведение рефлексии по результатам урока. Слайд 44. Рефлексия. Чтобы осмыслить все увиденное, услышанное и выполненное на нашем уроке мы предлагаем вам рефлексивный тест, направленный на оценку своих собственных действий. Рефлексивный тест. Я узнал (а) много нового. Мне это пригодится в жизни. На уроке было над чем, подумать. На все возникшие у меня в ходе урока вопросы я получил (а) ответы. На уроке я поработал (а) добросовестно и цели урока достиг(ла).

Сейчас прозвенит долгожданный звонок,
Увы, но к концу подошел наш урок.
Прошу, уберите рабочее место.
Давайте без слов, и, пожалуй, без жестов.
А я благодарность вам всем объявляю,
Проверив работы,
В журнал выставляю
Отметки все ваши, надеюсь привычно,
Что будут они хорошо и отлично.
Большое спасибо я вам говорю,
Мы цели достигли, благодарю.

Домашнее задание: параграф 5, 6 составить ребусы или загадки про металлы, подготовить сообщения про сплавы меди и сплавы железа, составить презентацию по теме “Сплавы”

Образовательный портал

Электронный журнал Экстернат.РФ, cоциальная сеть для учителей, путеводитель по образовательным учреждениям, новости образования

  • Главная
  • Публикации в журнале
  • Среднее специальное образование
  • Кристаллическое строение металлов. Физические свойства металлов

Кристаллическое строение металлов. Физические свойства металлов

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Методическая разработка урока

Кристаллическое строение металлов.
Физические свойства металлов

Пузикова Наталья Ивановна

Цели урока:

Образовательные: организация изучения физических свойств и кристаллического строения металлов, причин особых физических свойств металлов.

Развивающие: формирование умений установления причинно-следственных связей, проведение наблюдений.

Воспитательные: развитие представлений о безграничности познания, продолжение знакомства с категориями диалектики(содержание и форма),их взаимосвязью, формирование интереса к избранной профессии, наблюдательности.

Тип урока: Комбинированный.

Методы:

учения — репродуктивный, частично-поисковый.

Оборудование: периодическая система химических элементов, схемы – плакаты: «Влияние деформации на различные кристаллы», «Виды упаковок металлических кристаллов», справочник химика, реактивы:Cu, Fe, Al, Mg, Pb, Na в керосине, вода, химический стакан, пробирки, спиртовка, прибор для определения электропроводности, модели кристаллических решеток, фильм «Общие свойства металлов».

1.Актулизация знаний о строении твердых тел, типах кристаллических решеток.

2.Формирование новых понятий и способов действия;

Вновь вводимые понятия – типы упаковок металлических кристаллов: кубическая объемно-центрированная упаковка, кубическая гранецентрированная упаковка, плотнейшая гексагональная упаковка;

Предполагаемые приращения в знаниях – понимание зависимости физических и механических свойств металлов от их кристаллического строения;

Создание проблемной ситуации путем выявления различий в физических свойствах отдельных металлов в ходе эксперимента;

Основная проблема: в чем причина заметного различия физических свойств отдельных металлов.

Способ решения – выводится из строения металлических кристаллов.

3.Формирование умений и навыков при закреплении:

Индивидуальные задания с учетом уровня знаний.

4.Задание на дом: Выполнить упр. в тетради, повторить материал по конспекту.

Конспект урока.

1.Актулизация знаний.

Самостоятельная работа на 2 варианта(10-12 мин.)

1) Ниже приведен порядок распределения электронов по электронным слоям для некоторых элементов:

А)2,8,3. Б)2,8,18,8. В)2,8,14,2. Г)2,8,5. Д)2,7.

Какие из них являются металлами, назовите их.

2)Почему металлы являются проводниками электрического тока?

3)Определите вид химической связи у веществ: O2 ,Ca, Ni, HCl,CO2,H2,Zn.

2 вариант – задания типичные.

Фронтальная беседа по вопросам:

Преподаватель: При изучении новой темы нам понадобятся знания, полученные на уроках физики. Вспомните, на какие группы делятся твердые тела? К какой группе относятся металлы и их сплавы?

2.Изучение нового материала.

Преподаватель: На столах имеются образцы металлов. Изучите образцы металлов и опишите их физические свойства.

Учащиеся с помощью наводящих вопросов и справочных материалов записывают в тетрадь: твердость, непрозрачность, металлический блеск, проводят электрический ток, тепло, расширяются при нагревании, имеют определенную температуру плавления и кипения и другие.

Преподаватель: Перечислите известные вам механические свойства металлов, одинаковы ли они для всех?

Одинакова электропроводность для металлов?

Создается проблемная ситуация: в чем причина различия физико – механических свойств металлов.

Чтобы ответить на этот вопрос, необходимо знать строение атомов металлов и строение металлических кристаллов.

Преподаватель: Какое влияние оказывает металлическая связь на физико- механические свойства металлов, чем можно объяснить свойство металлов как электропроводность, теплопроводность

Учащиеся: Эти свойства объясняются наличием свободных электронов в металлических кристаллах.

Преподаватель: Запишем в тетрадь вывод «Чем выше концентрация свободных электронов в кристалле металла, тем ярче выражены металлические свойства тепло- и электропроводность.

Затем в совместной беседе учащиеся приходят к следующему выводу «Металлы пластичны, легко деформируются как при холодной, так и особенно при горячей обработке. Причиной пластичности является наличие металлической связи.

Физико — механические свойства металлов определяются:

1.Строением атомов и ионов металла, находящихся в узлах кристаллической решетки, числом свободных электронов, принимающих участие в образовании металлической связи;

2.Типом кристаллической решетки.

3.Закрепление материала.

Очень важно, чтобы учащиеся убедились в практической значимости знаний о свойствах металлов для своей профессии. Закрепление проводится в форме беседы.

Вопрос: Какое значение имеет знание Т плавления металлов.

Ответ: Зная Т пл. металлов, можно выбрать способ изготовления металлических изделий – паяние, сварку, литье. Т пл. определяет области применения легкоплавких и тугоплавких металлов.

Вопрос: Приведите пример, для каких целей необходимо знать теплопроводность металлов.

Ответ: Для правильного выбора металлов при изготовлении режущих инструментов и трущихся деталей машин.

Вопрос: Какое значение имеет знание теплового расширения металлов.

Ответ: Данные о тепловом расширении металлов необходимо знать при проведении работ по горячей ковке и штамповке металлических изделий. Необходимо уметь определять ,насколько изменяются объемные и линейные размеры детали при ее нагревании и охлаждении.

Вопрос: Какое значение имеет знание электропроводности.

Ответ: Зная электропроводность металлов, можно определить выбор их для передачи электроэнергии.

Вопрос: Какое значение имеет знание твердости металлов.

Ответ: Твердость металлов влияет на их обработку. От степени твердости зависит выбор металла для изготовления деталей машин и в особенности инструментов.

Вопрос: Какие свойства металлов называются технологическими. Какое значение имеет их знание для практической деятельности.

Ответ: Технологические свойства металлов представляют собой совокупность физических и механических свойств, которые определяют поведение металлов в процессе обработки.

4.Задание на дом – см. план урока.

мтомд.инфо

Строение металлов. Атомно-кристаллическое строение металлов. Кристаллическая решетка металлов.

Раздел:Материаловедение. Металловедение.

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место. Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике. Причина этого — в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

  • «металлический блеск» (хорошая отражательная способность);
  • пластичность;
  • высокая теплопроводность;
  • высокая электропроводность.

Строение металлов. Атомно-кристаллическое строение металлов.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Кристаллическая решетка металлов

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка. Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл. Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

  • размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов (в одном направлении выдерживаются строго определенными);
  • углы между осями (α, β, χ);
  • координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке;
  • базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки;
  • плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74).

Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа:

  • примитивный – узлы решетки совпадают с вершинами элементарных ячеек;
  • базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;
  • объемно-центрированный – атомы занимают вершины ячеек и ее центр;
  • гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней.

Типы кристаллических решеток

Рис. 2: а – объемно-центрированная кубическая; б– гранецентрированная кубическая; в – гексагональная плотноупакованная

Основными типами кристаллических решеток являются:

  1. Объемно — центрированная кубическая (ОЦК) (рисунок 2, позиция а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, Feα)
  2. Гранецентрированная кубическая (ГЦК) (рисунок 2, позиция б), атомы рассполагаются в вершинах куба и по центру куждой из 6 граней (Ag, Au, Feγ)
  3. Гексагональная, в основании которой лежит шестиугольник:
      — простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
      — плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).
Читать еще:  Галтовочная обработка

Химия. 11 класс

Конспект урока

Химия, 11 класс

Урок № 4. Строение кристаллов. Кристаллические решётки. Причина многообразия веществ

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению кристаллического состояния вещества, зависимости свойств веществ от типов кристаллических решеток. Объясняются причины многообразия веществ, такие как изотопия элементов, аллотропия, изомерия, гомология. Дается понятие химического синтеза.

Аллотропия – существование нескольких простых веществ, образованных одним и тем же химическим элементом.

Атомная кристаллическая решётка – регулярная структура твёрдого вещества, в узловых точках которой находятся атомы химического элемента.

Гомология – явление наличия в природе органических соединений, имеющих одинаковое строение и химические свойства, но отличающихся на некоторое целое число групп СН2— состав.

Изомерия – явления наличия нескольких веществ, имеющих один и тот же состав, но отличающихся по порядку соединения атомов.

Ионная кристаллическая решетка – регулярная структура твёрдого вещества, в узлах которой расположены положительно и отрицательно заряженные ионы.

Кристаллическая решетка – особая структура твёрдого вещества, в которой частицы вещества расположены в строго определенном порядке.

Кристаллы – твёрдые вещества, имеющие форму правильных многогранников, образованных в результате многократного регулярного повторения расположения составляющих вещество частиц.

Металлическая кристаллическая решетка – регулярная структура твёрдого вещества, в узлах которой расположены ионы металла.

Молекулярная кристаллическая решетка – регулярная структура твёрдого вещества, в узлах которой находятся молекулы вещества.

Полиморфизм – способность твёрдого вещества образовывать различные кристаллические структуры, состоящие из одних и тех же частиц.

Полиморфные модификации – разные кристаллические структуры, которые образованы частицами одного и того же вещества.

Химический синтез – процесс искусственного создания новых веществ физическими и химическими методами.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Строение кристаллов и типы кристаллических решеток

Кристаллами называются твёрдые вещества, частицы которых образуют трёхмерную периодическую пространственную структуру, называемую кристаллической решёткой. Грани кристаллов представляют собой правильные многоугольники. Свойства кристаллических тел различны. Например, алмаз обладает максимальной твёрдостью, а графит можно сломать руками, хотя эти вещества состоят атомов углерода. Свойства веществ зависят от типа кристаллической решетки. Различают четыре типа кристаллических решёток: атомную, ионную, молекулярную и металлическую.

Зависимость свойств веществ от типа кристаллической решетки

В узлах атомной кристаллической решётки расположены атомы, соединённые ковалентной связью. Примерами веществ, имеющих атомную кристаллическую решетку, являются алмаз, кремний, германий, бор. Вещества, имеющие атомную кристаллическую решетку, характеризуются высокой температурой плавления, большой твёрдостью.

В узлах ионной кристаллической решётки находятся положительные и отрицательные ионы, связь между ними ионная. Ионную кристаллическую решетку имеют соли, щёлочи и оксиды типичных металлов. Для веществ с ионной кристаллической решеткой характерны высокие температуры плавления, твёрдость, плотность, хорошая электропроводность.

В узлах молекулярной кристаллической решетки находятся молекулы, которые удерживаются за счет межмолекулярных вандервальсовых сил. Примером веществ с молекулярной кристаллической решеткой являются лёд, йод, нафталин, углекислый газ. Межмолекулярные связи значительно слабее ковалентных и ионных, поэтому для веществ с молекулярной кристаллической решёткой характерны низкие температуры плавления, невысокая твёрдость, возможность возгонки (переход из твёрдого состояния в газообразное, минуя жидкое).

Для металлов характерна металлическая кристаллическая решётка, в узлах которой расположены положительно заряженные ионы металлов, а между ними свободно перемещаются валентные электроны (так называемый электронный газ). Для веществ с металлической кристаллической решеткой характерны механическая прочность, плавкость, ковкость, хорошая тепло- и электропроводность, металлический блеск.

Свойства кристаллических тел определяются не только характером связи между частицами, но и их взаимным расположением относительно друг друга. В кристаллах алмаза все атомы углерода связаны ковалентными неполярными связями и находятся на одинаковом расстоянии друг от друга, образуя тетраэдры. В кристаллах графита каждые шесть атомов углерода связаны ковалентными неполярными связями, а между собой такие плоские шестиугольники связаны слабыми межмолекулярными связями.

Причины многообразия веществ

Не только углерод может образовывать разные вещества в зависимости от типа кристаллической решётки. Известно несколько веществ, образованных фосфором (белый, красный, чёрный и металлический фосфор). Сера может существовать в виде трёх модификаций (ромбическая, моноклинная и пластическая). Явление существования нескольких простых веществ, образованных одним и тем же элементом, называется аллотропией (полиморфизмом), а сами простые вещества – аллотропными (полиморфными) модификациями.

Существование изотопов – атомов одного и того же химического элемента, имеющих разные массовые числа — ещё одна причина огромного многообразия веществ.

Изучая органическую химию, вы узнали о существовании изомеров – молекул, имеющих одинаковый состав, но разную последовательность атомов и их расположение в пространстве. Изомеры встречаются не только среди органических соединений, например, изомером карбамида является цианат аммония.

Причиной разнообразия органических соединений является и гомология – существование ряда соединений, имеющих одинаковое строение и химические свойства, но отличающихся друг от друга на целое число групп СН2-.

118 известных на сегодняшний день химических элементов образуют миллионы различных веществ, но человек искусственным путём создает новые вещества с нужными ему свойствами. Создание человеком новых веществ получило название химического синтеза.

Таким образом, явления аллотропии (полиморфизма), изомерии, изотопии, гомологии, химический синтез новых соединений являются причинами многообразия веществ.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчет количества молекул в кристалле

Условие задачи: Молекула белого фосфора состоит из четырех атомов этого элемента. Сколько молекул белого фосфора содержится в кристалле фосфора массой 2,48 г? Ответ запишите в виде числа, приведенного к стандартному виду.

Шаг первый: найдём молярную массу молекулы белого фосфора Р4. Относительная атомная масса фосфора равна 31 а.е.м., молярная масса Р4 равна 4·31 = 124 (г/моль).

Шаг второй: найдём количество молей белого фосфора в кристалле массой 2,48 г. Для этого разделим массу кристалла на молярную массу Р4:

2,48 : 124 = 0,02 (моль).

Шаг третий: найдём количество молекул, содержащееся в 0,02 моль белого фосфора. Для этого число моль умножим на число Авогадро:

0,02·6,02·10 23 = 1,2·10 22 (молекул).

Ответ: 1,2·10 22 .

2. Расчёт числа атомов в молекуле фуллерена

Условие задачи: Одной из аллотропных модификаций углерода, применяемых в электронике, является фуллерен. 0,5 моль фуллерена имеют массу 360 г. Сколько атомов углерода входит в состав одной молекулы фуллерена?

Шаг первый: найдём молярную массу фуллерена.

Для этого массу имеющегося образца разделим на количество молей:

360 : 0,5 = 720 (г/моль).

Шаг второй: найдём количество атомов углерода в 1 моль фуллерена. Для этого молярную массу фуллерена разделим на массу 1 моль атомов углерода. 1 моль атомов углерода имеет массу 12 г.

Металл, все о металле, свойства металлов

Металл (название происходит от лат. metallum — шахта) — один из классов элементов, которые, в отличие от неметаллов (и металлоидов), обладают характерными металлическими свойствами. Металлами являются большинство химических элементов (примерно 80 %). Самым распространенным металлом в земной коре является алюминий.
Металлы — суть светлые тела, которые ковать можно. (Михаил Васильевич Ломоносов)
Некоторые металлы
Щелочные металлы: Литий, Натрий, Калий
Щелочноземельные металлы: Бериллий, Магний, Кальций
Переходные металлы: Железо, Платина
Другие металлы: Алюминий, Свинец, Медь, Цинк
Металлургия — совокупность связанных между собой отраслей и стадий производственного процесса от добычи сырья до выпуска готовой продукции — черных и цветных металлов и их сплавов.

К черным металлам относят железо, марганец и хром. Все остальные — цветные. По физическим свойствам и назначению цветные металлы условно делят на тяжелые (медь, свинец, цинк, олово, никель) и легкие (алюминий, титан, магний).

Большая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические вещества. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия. Металлургия различает руды черных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: т. н. благородные металлы (золото, серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей. Золото, серебро и платина относятся также к драгоценным металлам. Кроме того, в малых количествах они присутствуют в морской воде, растениях, живых организмах (играя при этом важную роль).
Характерные свойства металлов
  • Металлический блеск
  • Хорошая электропроводность
  • Возможность легкой механической обработки (например, пластичность)
  • Высокая плотность
  • Высокая температура плавления
  • Большая теплопроводность
  • Физические свойства металла
    Все металлы (кроме ртути) тверды при нормальных условиях. Температуры плавления лежат в диапазоне от 39 °C (ртуть) до 3410 °C (вольфрам). В зависимости от их плотности, металлы делят на легкие (плотность 0,53 ч 5 г/смі) и тяжелые (5 ч 22,5 г/смі). Металлы тонут
    Механические свойства металла
    Это способность металлов подвергаться различным способам механической обработки.
    Микроскопическое строение металла
    Характерные свойства металлов можно понять, исходя из их внутреннего строения. Все они имеют слабую связь электронов внешнего энергетического уровня (другими словами, валентных электронов) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решетке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решетки). Пластичность обусловлена малым энергетическим барьером для движения дислокаций и сдвига кристаллографических плоскостей. Твердость можно объяснить большим числом структурных дефектов (междоузельные атомы, вакансии и др.).

    Из-за легкой отдачи электронов возможно окисление металлов, что может приводить к коррозии и дальнейшей деградации свойств. Способность к окислению можно узнать по стандартному ряду активности металлов. Этот факт подтверждает необходимость использования металлов в комбинации с другими элементами (сплав, важнейшим из которых является сталь), их легирование и применение различных покрытий.

    Для более корректного описания электронных свойств металлов необходимо использовать квантовую механику. Во всех твердых телах с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешенные зоны, причем зона, образованная валентными электронами, называется валентной зоной. Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для ее полного заполнения.

    Принципиальная особенность такой частично заполненной зоны состоит в том, что даже при минимальном приложенном напряжении в образце начинается перестройка валентных электронов, т. е. течет электрический ток.

    Тема 1: Основы строения металлов.

    Атомно-кристаллическое строение металлов.

    Введение в металловедение.

    Металлы, особенности атомно-кристаллического строения.

    Классификация видов кристаллических решеток.

    Аллотропия или полиморфные превращения.

    Строение и дефекты реальных металлов.

    Строение реальных металлов.

    Дефекты строения металлов.

    Кристаллизация чистого металла.

    Методы исследования металлов.

    1.1 Введение в металловедение.

    Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами.

    Целью преподавания дисциплины является научить будущих инженеров применять основные методы управления конструкционной прочностью материалов и проводить обоснованный выбор материала для изделий с учетом условий их эксплуатации.

    Материаловедение — это наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами.

    Все материалы характеризуются основными физическими и механическими свойствами, от которых, в свою очередь, зависят технологические и эксплуатационные свойства, а также зависит область применения материалов в технике.

    Традиционно материалы можно разделить на две основные группы –металлы и неметаллы.

    Основная часть материаловедения — металловедение, в развитии которого, ведущую роль сыграли российские ученые: Аносов П.П., Чернов Д.К., Курнаков Н.С., Гуляев А.П. и другие.

    1.2 Металлы, особенности атомно-кристаллического строения.

    Металлы – один из классов конструкционных материалов, характеризующийся определённым набором свойств обусловленных особенностями своего строения: «металлический блеск» (хорошая отражательная способность); пластичность; твердость; высокая теплопроводность; высокая электропроводность и т.д.

    Согласно теории металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

    Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием свободных электронов «электронного газа».

    Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком называемым кристаллическая решетка.

    Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

    Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл. Элементарная ячейка характеризует особенности строения кристалла.

    Металлическая связь

    Большинство металлов имеют общие свойства, которые отличны от свойств других простых или сложных веществ. Это такие свойства как:

    • повышенные температуры плавления,
    • значительные электро- и теплопроводность,
    • способность отражать свет и
    • способность прокатываться в листы
    • характерный металлический блеск.

    Эти свойства связаны с существованием в металлах металлической связи:

    Металлическая связь — это связь между положительно заряженными ионами и атомами металлов и свободно движущимися по кристаллу электронами.

    Образование металлической связи

    Простое вещество — металл существует в виде кристалла, имеющим металлическую кристаллическую решетку, в узлах которой находятся атомы или ионы металлов.

    Валентные атомные орбитали каждого атома металла в кристалле перекрываются сразу с орбиталями нескольких близлежащих соседей, и число этих атомных орбиталей чрезвычайно велико. Поэтому число возникающих молекулярных орбиталей тоже велико.

    Мы уже знаем, что число валентных электронов атомов металлов небольшое, к тому же они достаточно слабо связаны с собственными ядрами и могут легко отрываться. Поэтому электроны заполняют всю зону взаимодействующих орбиталей образуя металлическую связь. Т.о. в кристаллической решетке металла перемещение электронов происходит свободно.

    Такие особенности, как тепло- и электропроводность металлов связано с существованием свободно движущихся электронов в кристаллической решетке.

    Особенности металлической связи

    Отличие металлической связи от ковалентной

    • Несмотря на то, что металлическая связь как и ковалентная связь образована посредством обобществления электронов, однако в металлической связи электроны принадлежат всему множеству ионов/атомов металлов, а в ковалентной только двум атомам неметаллов.
    • Важное отличие металлической связи от ковалентной – это то, что здесь не существует направленности связи, т.к. электроны по кристаллу распределены почти равномерно.
    • Прочность металлической связи также отличается: ее энергия в 3-4 раза меньше энергии ковалентной связи.

    Отличие металлической связи от ионной

    В образовании как ионной связи, так и металлической принимают участие ионы — катионы. Однако ионная связь — это связь между катионами и анионами, а в металлической связи анионы отсутствуют, зато имеются электроны, свободно движущиеся между катионами/атомами металлов.

    Прочность металлической связи

    • Если рассмотреть щелочные металлы, то наиболее активный среди них – цезий, легче всего будет отдавать свои валентные электроны, а труднее всего – рубидий, наименее активный среди щелочных металлов.

    Чем легче атом металла переходит в состояние иона, т.е. отдает электроны, тем менее прочна его решетка, вследствие отталкивания положительно заряженных ионов.

    В связи с этим металл будет обладать пониженной температурой плавления и становится более мягким.

    • Чем больше валентных электронов имеет атом металла, тем более прочна его кристаллическая решетка, и тем выше его температуры кипения и плавления

    Ниже приведена зависимость температуры плавления металлов от их положения в периодической таблице и числа валентных электронов.

    Урок химии :Особенности строения атомов металлов.Физические свойства металлов.

    специалист в области арт-терапии

    Урок химии :Особенности строения атомов металлов. Физические свойства металлов.

    Образовательная — рассмотреть положение металлов в системе элементов Д.И. Менделеева, познакомить обучающихся с основными физическими свойствами металлов, выяснить, чем они обусловлены; выявить закономерности проявления металлами физических свойств; ввести понятие о сплавах и их свойствах.

    Развивающая — развивать теоретическое мышление обучающихся и их умение прогнозировать физические свойства металлов на основе их строения атома.

    Воспитательная — способствовать развитию познавательного интереса обучающихся к изучению химии

    Задачи урока:

    Обучающиеся должны изучить положение металлов в Периодической системе элементов,

    Выяснить особенности строения их атомов и кристаллов; физические свойства металлов; отличие свойств металлов от свойств их сплавов.

    Уметь применять полученные знания при выполнении заданий, упражнений по данной теме.

    Тип урока: урок изучения нового материала.

    Оборудование:

    коллекция металлов и сплавов; таблицы «Виды химической связи», «Типы кристаллических решеток» и «Общие физические свойства металлов»,

    две стеклянные пластинки и вода для проведения опыта.

    I. Организационный момент

    (преподаватель знакомит обучающихся с темой урока, записанной на доске, планом проведения урока).

    II. Новый материал

    Преподаватель задает вопросы обучающимся :

    1. Как изменяются в периодах периодической системы свойства химических элементов?

    2. Как изменяются свойства химических элементов в главных подгруппах?

    3. Где располагаются металлы в периодической системе?

    Обучающиеся делают выводы:

    — Металлами называют химические элементы и простые вещества.

    — Металлы занимают левую нижнюю часть периодической системы. А, следовательно, их атомы имеют большие радиусы и, как правило, небольшое количество валентных электронов. Для их ионизации требуется относительно небольшая энергия. Возникающие положительные ионы металла удерживаются все вместе за счет притяжения ко всем свободно движущимся в металле электронам.

    Преподаватель демонстрирует таблицу «Виды химической связи», задает вопрос : в чем сходство и различия между металлической связью и ковалентной? ?(сходство с ковалентной: валентные электроны находятся в общем пользовании, но в случае ковалентной в общем пользовании только двух атомов, а в случае металлической связи эти электроны связывают все атомы куска металла, создают «электронный газ».)

    В чем сходство и различия между металлической и ионной связью? ( с ионной связью металлическая сходна наличием ионов, но в металлической положительные ионы удерживаются «электронным газом», а в ионной — положительными ионами)

    Преподаватель демонстрирует таблицу «Типы кристаллических решеток»:

    Благодаря притяжению всех свободных электронов всеми положительными ионами металлическая связь очень прочна, поэтому для металлов характерны кристаллические решетки с плотной упаковкой ионов: гексагональная (цинк, магний), кубическая гранецентрированная (медь, серебро, алюминий) и менее плотная — кубическая объемноцентрированная (железо, натрий, барий).

    Преподаватель: И так, металл — это вид атомов, способных легко отдавать при химических реакциях электроны, входить в состав химических соединений в виде положительно заряженных ионов, а также образовывать простые вещества с характерными для металлов физическими свойствами.

    Рассмотрите образцы металлов и назовите, какими общими физическими свойствами они обладают?

    Обучающиеся называют: электропроводность, теплопроводность, металлический блеск, твердость, пластичность.

    Преподаватель: Как можно объяснить наличие общих физических свойств у такого большого числа разнообразных простых веществ?

    Обучающиеся делают вывод: причина в особенностях металлической связи, структуре кристаллов металлического типа.

    Преподаватель: демонстрирует таблицу «Общие физические свойства металлов»

    Преподаватель: Действительно, электрическая проводимость металлов объясняется движением свободных электронов. Почему при нагревании электрическая проводимость металлов уменьшается? Чем обусловлена теплопроводность, и как она изменяется при нагревании? (отвечать на вопросы помогает таблица).

    Пластичность — способность изменять свою форму при ударе, прокатываться в тонкие листы, вытягиваться в проволоку.

    В чем причина пластичности металлов?

    В этом нам поможет разобраться следующий опыт: две стеклянные пластинки смачиваем водой и прижимаем друг к другу. Они легко скользят друг по другу, но их трудно разъединить. Прослойка воды имитирует свободные электроны, а значит причина пластичности — также особое строение кристаллической решетки.

    Металлический блеск также обусловлен особым строением металлов (благодаря свободным электронам металлы хорошо отражают световые лучи).

    Преподаватель: Да, металлы обладают общими физическими свойствами, которые обусловлены их особым строением, но у разных металлов степень проявления каждого свойства различна. Так, лучшей электропроводностью обладает серебро, на втором месте — медь, а на третьем — золото.

    Такие различия в проявлении физических свойств связаны с тем, как плотно упакованы ионы в кристаллической решетке металла, каковы их размеры и сколько валентных электронов у каждого атома обобществляется. Например, чем большее число атомов металла находиться в единице объема металла, тем большей плотностью он будет обладать. Наиболее плотная упаковка ионов в кристаллах гексагонального вида. Однако плотность вещества зависит не только от вида кристаллической решетки, но и от массы составляющих его ионов и от их радиусов. Поэтому наименьшей плотностью обладают щелочные металлы. Самый тяжелый из всех металлов — осмий.

    Если металлы образуют кристаллы одного вида (например, щелочные металлы), то возрастание плотности по ряду от лития до цезия объясняется увеличением их атомных масс и масс образуемых ионов, т.к. массы возрастают в большей степени, чем атомные радиусы. Если металлы образуют кристаллы разного вида, то закономерность более сложная, и ее описанием занимается больше физика, чем химия.

    В зависимости от плотности металлы принято делить на легкие (их плотность менее 5 г/см 3 ) и тяжелые (их плотность более 5 г/см 3 ). Так у алюминия плотность — 2, 7 г/см 3 — металл легкий.

    Пластичность металлов также зависит от вида кристалла и от количества связывающих электронов, от размеров ионов.

    Самый пластичный — золото. Кусочек золота величиной со спичечную головку можно расплющить в просвечивающий голубовато-зеленым светом лист площадью 50 квадратных метров. Образец золота весом 1г можно протянуть в проволоку длиной 2 км. Исстари на Руси выделывали «сусальное золото»: сначала его прокатывали в вальцах до толщины листа писчей бумаги, затем укладывали между тонкими пленками, снятыми со слепой кишки коровы и прокатывали на наковальне деревянными молоточками. Повторяя эту операцию неоднократно, получали листочки золота толщиной всего в десятую долю микрона, т.е. 500 атомов. «Сусальное золото» шло на покрытие деревянных предметов, кожи и т.п.

    Самые хрупкие металлы V, VI, VII групп. У них от 5 до 7 валентных электронов, следовательно, очень крепкая связь ионов между собой, что препятствует их скольжению друг относительно друга, снижает пластичность. Этим же объясняется их тугоплавкость и твердость.

    Чем меньше количество свободных электронов, чем больше размеры ионов, чем слабее связи ионов, тем мягче металлы. Самые мягкие — щелочные металлы, самый твердый — хром.

    Температуры плавления металлов изменяются в очень широких пределах: от минус 39°С до 3410 у вольфрама. Ртуть единственный жидкий при обычных условиях металл.

    Следует еще раз обратить внимание , что степень проявления физических свойств у разных металлов зависит не только от количества валентных электронов, но и от вида кристаллической решетки, размеров атомов и ионов, т.е. причины проявления металлами физических свойств многообразны.

    Самостоятельная работа обучающихся:

    1.Заполните таблицу: «Физические свойства металлов»

    используя таблицу приложения: «Справочные данные о физических свойствах металлов»

    Примеры металлов, у которых свойство наиболее выражено

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector