Bktp-omsk.ru

Делаем сами
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Каким путем получается металлический алюминий?

Производство алюминия

Как производится алюминий

Алюминий в чистом виде в природе не встречается, именно поэтому еще 200 лет назад человечество ничего не знало об этом металле. Метод получения алюминия при помощи электричества был разработан в 1886 году и применяется до сих пор. Вот как это происходит.

ДОБЫЧА БОКСИТОВ

Производство алюминия начинается с добычи бокситов. Эта горная порода богата алюминием, который содержится в ней в форме гидрооксидов. Около 90% мировых запасов бокситов сосредоточены в тропическом поясе.

ПРОИЗВОДСТВО ГЛИНОЗЕМА

Боксит дробят, высушивают и размалывают в мельницах вместе с небольшим количеством воды. Образовавшуюся густую массу собирают в емкости и нагревают паром, чтобы отделить большую часть кремния, содержащегося в бокситах.

Руду загружают в автоклав и обрабатывают щелочью – едким натром. В получившейся щелочной раствор из руды переходит практически весь оксид алюминия, а все посторонние примеси формируют твердый осадок — красный шлам.

Раствор алюмината натрия несколько суток перемешивают в декомпозерах, в результате чего в осадок выпадает чистый глинозем – Al2O3.

ЭЛЕКТРОЛИЗ АЛЮМИНИЯ

На алюминиевом заводе глинозем засыпают в ванны с расплавленным криолитом при температуре 950 ⁰С. Через раствор пропускают электрический ток силой до 400 кА и выше – он разрывает связь между атомами алюминия и кислорода, в результате металл в жидкой форме собирается на дне ванны.

ПЕРВИЧНЫЙ АЛЮМИНИЙ

Первичный алюминий отливается в слитки и отправляется потребителям, а также используется
для дальнейшего производства алюминиевых сплавов для различных целей.

АЛЮМИНИЕВЫЕ СПЛАВЫ

Литейные алюминиевые сплавы служат для получения готовых изделий путем отливки металла в формы. При этом необходимых свойств от сплава добиваются добавлением к нему различных добавок: кремния, меди и магния. Из таких сплавов, например, производят детали автомобильных и авиационных двигателей или колесные диски.

Благодаря высокой пластичности алюминий легко прокатывается в тончайшие листы. Для этих целей соответствующие алюминиевые сплавы выливают в прямоугольные бруски, достигающие 9 метров в длину и более. Из них производят алюминиевую фольгу и банки для напитков, а также детали автомобильных кузовов и многое другое.

Путем экструзии – получения нужной формы продавливанием размягченного металла через формовое отверстие – сегодня изготавливается большинство изделий из алюминия: от оправы очков или корпуса телефона, до фюзеляжа самолета или космического корабля.

ПЕРЕРАБОТКА АЛЮМИНИЯ

В отличие от железа алюминий не подвержен коррозии, поэтому изделия из него можно переплавлять и использовать металл бесконечное количество раз. При этом переработка алюминия требует всего 5% энергии, затраченной на изготовление алюминия впервые.

Отливка

Отливка — продукция, полученная способом заливки жидкого сплава в литейные формы, в которых, после охлаждения и затвердения, происходит формирование. Она может быть полностью законченным изделием либо требовать дальнейшей механической обработки.

Подразделяется на следующие виды:

  • полуфабрикаты – это чушки, которые в дальнейшем требуют прохождения процесса переработки;
  • слитки, обработка которых проводится давлениям;
  • фасонные отливки – обрабатываются с помощью резания;
  • готовая продукция, которая не требует никакой механической обработки, только очищается либо окрашивается декоративной краской.

Для получения отливок используется множество разновидностей металла и сплавов, стекло, пластмасса, воск и другой исходный материал. Около 80% заготовок получаются методом литья в песчаные формы, но полученная таким образом отливка перед отправкой заказчику требует обязательной обработки.

Литейное производство позволяет получить заготовки высокой точности даже с самой сложной конфигурацией, при этом пропуски, требующие обработку — незначительные. Технология получения отливок выбирается с учетом их размеров и способа производства.

Разделяют три группы получения отливок:

1) в разовых формах;

2) по растворяемым моделям;

3) отливка в формах полупостоянного и комбинированного типа, сделанных из огнеупорных материалов:

Это основные виды литья, но на практике применяются и комбинированные варианты.

Литье металлов

Литье металлов – производственный процесс, основанный на технологии заливки расплавленного, горячего металла в специальные литейные формы, в результате которого получают литые заготовки — отливки. Полость формочек повторяет конфигурацию будущих заготовок и представляет собой рабочую часть литейной формы, куда поступает жидкий металл. Здесь будущие заготовки охлаждаются, затвердеют и получают вид конечной продукции. До поставки потребителю алюминиевые отливки проходят механическую обработку (токарные работы, фрезерование, шлифование и полировка).

Такой способ применяется для получения алюминиевых отливок, которые за счет уникальных химических свойств используются во многих сферах: в приборостроении, в строительстве, в автомобилестроении, мебельном производстве (фурнитура и декоративные детали) и пр. Для их получения применяются различные технологии, выбор которых зависит от размеров, конфигурации и других показателей, требуемых от конечной продукции.

Литье в песчаные формы

Литье отливок в песчаные формы — самый распространенный и дешевый способ литья. Начальным этапом этого метода является изготовление литейной модели. Раньше делали ее из дерева, но в современном производстве изготавливают пластиковые формочки. Модель засыпается специальной смесью из песка и связующего, который уплотняется прессованием. Литье отливки осуществляется путем заливки расплава в образовавшиеся полости через специальные отверстия. После остывания, форму разбивают и вынимают ли в дальнейшем обязательно проходят переработку.

В современном производстве технология литья в песчаные формы осуществляется применением вакуумных форм, которые заполняются песком. Чтобы получить форму, используют металлическую опоку, которая состоит из двух бездонных коробов, которые засыпаются песком и утрамбовываются. На поверхности разъема снимается отпечаток будущей модели, соответствующей форме отливки. Соединяя две формы, осуществляется заливка расплава.

Литье в кокиль

Это наиболее качественный способ литья отливки, который осуществляется с помощью разборной металлической формы. После застывания кокиль используется повторно. Но делается это после его очистки. Особенностью данного метода заключается в том, что затвердение жидкого расплава происходит без какого-либо внешнего воздействия. Полученные таким образом изделия обладают мелкозернистым, плотным строением, обеспечивающим герметичность и хорошие механические показатели.

Кокиля используются для получения отливок из разных сплавов, чаще всего алюминиевых и магниевых, обладающих невысокой температурой плавления. При этом один кокиль можно использовать до 1000 раз. Литье в кокиль — очень эффективный метод для серийного производства деталей, что и является причиной его применения для получения до 45% изделий.

Литье под давлением

Этот метод гарантирует высокое качество поверхности, которую после этого не придется подвергать механической обработке. Он очень производительный для получения деталей различной конфигурации, весом от нескольких грамм до десяток кг.

Литье под давлением позволяет получать сложные детали, с наличием криволинейных поверхностей и различных канал. При этом чаще всего используют цинковые, магниевые, латунные и алюминиевые отливки.

Технология ЛПД имеет много плюсов:

  • низкая цена;
  • точность отливки в размерах и конфигурации;
  • с одной пресс формы получают множество отливок.

Но данная технология имеет и ряд минусов: продолжительность процесса, высокая стоимость на производство пресс форм, сложности в получении отливок, содержащих скрытые полости, а также возможность появления в заготовках газовых раковин и усадочных трещин.

Для изготовления алюминиевых отливок в ЛПД применяют специальное оборудование, оснащенное холодной горизонтальной камерой, предназначенной для прессовки материала, и полуавтоматические машины для литья сплавов из цинка с горячей камерой прессовки материала и с усилием запирания.

Литье по выплавляемым моделям

Данный метод позволяет осуществить литье отливки высокой точности. Заранее изготавливается точная копия модели из парафина, воска и стеарина и другого материала, а также литниковая система. Применяется в случаях изготовления деталей высокой точности (например, лопатки турбин и т. п.).

На блок модели наносится суспензия и производится обсыпка огнеупорным наполнителем из кварца, дистенсилиманита, электрокорунда и т. д. Требуется наносить 6 – 10 слоев, каждый из них сушится примерно полчаса. Этот процесс ускоряется с помощью сушильных шкафов, закачанных аммиачным газом. Таким образом, формируется оболочка, из которой выплавляют модельный состав. Осуществляется это в воде, воздействием пара высокого давления или путем выжигания.

Следующим этапом литья по выплавляемым моделям является прокаливание блока путем вытопки при температуре 1000 градусов Цельсия. Затем устанавливают нагретый блок в печь и в оболочку заливают расплавленный металл. Последним этапом является охлаждение, выбивка и отрезка отливки. Плюсом данного способа является литье отливок из сплавов, которые трудно поддаются механической обработке. Применяется данная технология и для изготовления единичных деталей, и в серийном производстве.

Литье по газифицируемым моделям

Технология ЛГМ – наиболее выгодное решение в плане экономичности, экологичности и высокого качества полученных фасонных отливок. Данный метод все больше внедряется в мировом производстве, особенно популярен он в США и Китае. В начале изготавливается копия модели из пенопласта, которая помещается в песчаную форму. Таким образом изготавливаются отливки массой до 2 тонн и более, размерами от 40 до 1000 мм.

Этот метод активно применяется в двигателестроении для получения головок блоков цилиндров, отдельных блоков и прочих деталей. При этом для годного литья массой 100 кг расходуется несколько видов неметаллических материалов, предназначенных для формирования моделей-формочек:

  • Противопригарное покрытие – до 25 кг;
  • Кварцевый песок – 50кг;
  • Пенополистирол – 6кг;
  • Полиэтиленовая пленка – около 10 кв.м.

Формовка при этом состоит из засыпки модели песчаным составом, с возможностью его повторного использования в 95-97% случаях.

Центробежное литье

Литье отливки центробежным методом применяется для получения деталей с формой тела вращения из чугуна, алюминия, стали и бронзы. Расплав заливается в металлическую форму, которая вращается со скоростью до 3000 об/мин.

За счет центробежной силы расплав равномерно распределяется внутри формы, после кристаллизации образуется отливка. Такой способ позволяет получать двухслойные заготовки, состоящие из различных сплавов. Отливка, полученная таким способом, обладает высокой плотностью и хорошими физико-механическими качествами.

Большим плюсом центробежного литья является возможность образования внутренних полостей без необходимости применения стержней, а также экономия сплава за счет отсутствия литниковой системы. Таким методом получается до 95% годных изделий.

В производственном процессе используется оборудование, оснащенное горизонтальными осями вращения. Широко применяется метод центробежного литья для получения отливок гильз, втулок и прочих деталей с формой тела вращения.

Литье в оболочковые формы

Способ литья в оболочковых формах позволяет получить фасонные алюминиевые отливки из металлических сплавов путем их заполнения смесью из песчаных зерен (в основном кварцевых) и синтетического порошка (пульвер-бакелита и фенолоформальдегидной смолы).

Оболочковая форма получается засыпкой на нагретую до 300 °C металлическую модель и ее выдержкой до образования упрочненного тонкого слоя. После этого избыток смеси удаляется. Если используется плакированная смесь, то ее вдувают в зазор, образовавшийся между наружной контурной плитой и нагретой моделью.

И в первом, и во втором случае необходимо подождать упрочнения оболочки на модели в печи. Последующий этап – это скрепление полученных полуформ, их помещение в металлический корпус и заливка расплава. Таким способом осуществляется литье алюминиевых отливок весом до 25 кг. Плюсами данной методики является контроль над тепловым режимом охлаждения заготовок, возможность механизации процесса и повышения производительности.

Цветное литье отливки

Цветное литье отливки – процедура изготовления заготовок определенной формы из металла путем заполнения необходимой формы жидким материалом (алюминий, бронза, латунь, медь).

Применяются следующие разновидности отливки цветного литья:

  • заполнение формы при ее вращении (центробежное цветное литье);
  • метод цветного литья в металлические формы с охлаждением (кокиль);
  • методика заполнения форм ПГС.

Из всех названных наиболее качественным и экономным вариантом цветного литья является первый, это практически безотходный способ литья.

Особенности цветного литья отливки положены и в основу художественного литья (дизайнерские изделия, изготовленные по особым эскизам из латуни, бронзы и чугуна) для получения как мелких деталей декора, так и ворот, заборов и фонтанных конструкций.

Сплавы цветного литья отличаются своей прочностью и стойкостью к коррозии под воздействием раствора из бетона цемента, извести.

Онлайн калькулятор

— С помощью онлайн калькулятора вы можете рассчитать приблизительную стоимость вашего заказа

Производство алюминия

«В природе ничто не возникает мгновенно и ничто не появляется в свете в совершенно готовом виде».

Александр Герцен
русский публицист, писатель

Производство металла делится на три основных этапа: добыча бокситов – алюминийсодержащей руды, их переработка в глинозем – оксид алюминия, и, наконец, получение чистого металла с использованием процесса электролиза – распада оксида алюминия на составные части под воздействием электрического тока. Из 4-5 тонн бокситов получается 2 тонны глинозема, из которого производят 1 тонну алюминия.

В мире существуют несколько видов алюминиевых руд, но основным сырьем для производства этого металла являются именно бокситы. Это горная порода, состоящая, в основном, из оксида алюминия с примесью других минералов. Боксит считается качественным, если он содержит более 50% оксида алюминия.

Бокситы могут сильно отличаться друг от друга. По структуре они бывают твердые и плотные либо рыхлые и рассыпчатые. По цвету – как правило, кирпично-красные, рыжеватые или коричневые из-за примеси оксида железа. При небольшом содержании железа бокситы имеют белый или серый цвет. Но иногда встречаются руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.

Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – из них 73% приходится на пять стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. В Гвинее бокситов больше всего – 5,3 миллиарда тонн (28,4%), при этом они высокого качества, содержат минимальное количество примесей и залегают практически на поверхности.

Следующим этапом является производственной цепочки является переработка бокситов в глинозем – это оксид алюминия Al2O3, который представляет собой белый рассыпчатый порошок. Основным способом получения глинозема в мире является метод Байера, открытый более ста лет назад, но актуальный до сих пор – около 90% глинозема в мире производятся именно так. Этот способ весьма экономичен, но использовать его можно только при переработке высококачественных бокситов со сравнительно низким содержанием примесей – в первую очередь кремнезема.

Метод Байера основан на следующем: кристаллическая гидроокись алюминия, входящая в состав боксита, хорошо растворяется при высокой температуре в растворе едкого натра (каустической щёлочи, NaOH) высокой концентрации, а при понижении температуры и концентрации раствора вновь кристаллизуется. Посторонние, входящие в состав боксита (так называемый балласт), не переходят при этом в растворимую форму или перекристаллизовываются и выпадают в осадок до того, как производится кристаллизация гидроокиси алюминия. Поэтому после растворения гидроокиси алюминия балласт легко может быть отделен – он называется красный шлам.

Это густая масса красно-бурого цвета, состоящая из соединений кремния, железа, титана и других элементов. Его складируют на тщательно изолированных территориях – шламохранилищах. Их обустраивают таким образом, чтобы содержащиеся в отходах щёлочи не проникали в грунтовые воды. Как только хранилище отрабатывает свой потенциал, территорию можно вернуть в первоначальный вид, покрыв её песком, золой или дёрном и посадив определённые виды деревьев и трав. На полное восстановление могут уйти годы, но в итоге местность возвращается в изначальное состояние.

Многие специалисты не считают красный шлам отходом, так как он может служить сырьем для переработки. Например, из него извлекают скандий для дальнейшего производства алюминиево-скандиевых сплавов. Скандий придает таким сплавом особую прочность, сферы использования – автомобиле- и ракетостроение, спортивная экипировка, производство электропроводов.

Также красный шлам может использоваться для производства чугуна, бетона, получения редкоземельных металлов.

У глинозема нет срока годности, но хранить его непросто, так как при малейшей он возможности активно впитывает влагу – поэтому производители предпочитают как можно быстрее отправлять его на алюминиевое производство. Сначала глинозем складывают в штабели весом до 30 тысяч тонн – получается своеобразный слоеный пирог высотой до 10-12 метров. Потом пирог «нарезают» и грузят для отправки в железнодорожные вагоны – в среднем, в один вагон от 60 до 75 тонн (зависит от вида самого вагона).

Читать еще:  Металлическая печь с кирпичным щитком

Существует еще один, гораздо менее распространенный способ получения глинозема – метод спекания. Его суть заключается в получения твердых материалов из порошкообразных при повышенной температуре. Бокситы спекают с содой и известняком – они связывают кремнезем в нерастворимые в воде силикаты, которые легко отделить от глинозема. Этот способ требует больших затрат, чем способ Байера, но в то же время дает возможность перерабатывать бокситы с высоким содержанием вредных примесей кремнезема.

Глинозем выступает непосредственным источником металла в процессе производства алюминия. Но для создания среды, в которой этот процесс будет происходить, необходим еще один компонент – криолит.

Это редкий минерал из группы природных фторидов состава Na3AlF6. Обычно он образует бесцветные, белые или дымчато-серые кристаллические скопления со стеклянным блеском, иногда – почти черные или красновато-коричневые. Криолит хрупкий и легко плавится.

Природных месторождений этого минерала крайне мало, поэтому в промышленности используется искусственный криолит. В современной металлургии его получают взаимодействием плавиковой кислоты с гидроксидом алюминия и содой.

Ток для производства алюминия

Для запуска двигателя автомобильный аккумулятор должен обеспечить электрический ток в 300-350 А в течение 30 секунд. То есть в 1000 раз меньше, чем нужно одному электролизеру для постоянной работы.

В каждой ванне происходит процесс электролиза алюминия. Емкость ванны заполняется расплавленным криолитом, который создает электролитическую (токопроводящую) среду при температуре 950°С. Роль катода выполняет дно ванны, а анода – погружаемые в криолит угольные блоки длиной около 1,5 метров и шириной 0,5 метра, со стороны они выглядят как впечатляющих размеров молот.

Каждые полчаса при помощи автоматической системы подачи глинозема в ванну загружается новая порция сырья. Под воздействием электрического тока связь между алюминием и кислородом разрывается – алюминий осаждается на дне ванны, образуя слой в 10-15 см, а кислород соединяется с углеродом, входящим в состав анодных блоков, и образует углекислый газ.

Примерно раз в 2-4 суток алюминий извлекают из ванны при помощи вакуумных ковшей. В застывшей на поверхности ванны корке электролита пробивают отверстие, в которое опускают трубу. Жидкий алюминий по ней засасывается в ковш, из которого предварительно откачан воздух. В среднем, из одной ванны откачивается около 1 тонны металла, а в один ковш вмещается около 4 тонн расплавленного алюминия. Далее этот ковш отправляется в литейное производство.

При производстве каждой тонны алюминия выделяется 280 000 м 3 газов. Поэтому каждый электролизер независимо от его конструкции оснащен системой газосбора, которая улавливает выделяющиеся при электролизе газы и направляет их в систему газоочистки. Современные «сухие» системы газоочистки для улавливания вредных фтористых соединений используют ни что иное, а глинозем. Поэтому перед тем как использоваться для производства алюминия, глинозем на самом деле сначала участвует в очистке газов, которые образовались в процессе производства металла ранее. Вот такой замкнутый цикл.

Для процесса электролиза алюминия требуется огромное количество электроэнергии, поэтому важно использовать возобновляемые и не загрязняющие окружающую среду источники этой энергии. Чаще всего для этого используются гидроэлектростанции – они обладают достаточной мощностью и не имеют выбросов в атмосферу. Например, в России 95% алюминиевого мощностей обеспечены гидрогенерацией. Однако есть в места в мире, где угольная генерация пока доминирует – в частности, в Китае на нее приходится 93% производства алюминия. В результате для производства 1 тонны алюминия с использованием гидрогенерации в атмосферу выделяется чуть более 4 тонн углекислого газа, а при использовании угольной генерации – в пять раз больше – 21,6 тонны.

Ученые НИТУ «МИСиС» открыли способ массового и дешевого производства наночастиц

В поисках совершенного металлического стекла — аморфного металла ученые НИТУ «МИСиС» и Университета Тохоку (Япония) натолкнулись на эффект, с помощью которого можно устроить революцию в производстве нанометаллов, а также усовершенствовать сразу несколько технологий. Статья исследователей под руководством профессора Дмитрия Лузгина опубликована в журнале Intermetallics.

Аморфные металлы часто называют «материалами будущего». Из-за отсутствия кристаллической решетки они проявляют самые необычные свойства, которые уже нашли свое применение в сердечниках трансформаторов, всевозможных датчиках, сверхпрочных композитах. Правда, большинство аморфных металлов не только очень прочные, но и безумно хрупкие. Поэтому основным посылом для мировых научных работ на данный момент стало получение композитных материалов путем термической кристаллизации. Цель — добиться получения пластичных материалов. Она пока не достигнута, поэтому мировое научное сообщество живо интересуется тем, как же эта самая кристаллизация происходит. Какие фазы образуются в результате кристаллизации, какими свойствами они обладают.

«Мы тоже находимся в процессе таких поисков, можно сказать, в тренде, — рассказывает сотрудник кафедры материаловедения цветных металлов НИТУ „МИСиС“ Андрей Базлов. — И в процессе таких поисков мы первыми в мире обнаружили интересное свойство аморфного сплава на основе алюминия: если нагревать аморфный сплав с большой скоростью, получается один материал, а если медленно — другой. Это само по себе необычно, так как, как правило, разницы в конечных продуктах при изменении скорости нагрева металлических стекол не возникает».

Особенностью нового материала стало то, что в процессе быстрой кристаллизации в нем возникают наночастицы алюминия сферической формы. Их размер около 10 нм. Как рассказал Андрей Базлов, этот материал вдвое тверже своего «медленного» аналога. Однако при этом он такой же хрупкий. Но, как оказалось, в данном случае это неплохо.

Дело в том, что обычно наноалюминий (как и многие другие наночастицы) получают довольно сложными методами: либо осаждением из газовой фазы, либо взрывным диспергированием. В любом случае, это очень энергоемкие процессы. «Мы готовим наш материал классическими металлургическими методами, которые требуют на порядки меньше энергии. Фактически, это литьё, — поясняет Андрей Базлов. — Не совсем классическое, но литьё, плюс обычная термическая обработка — отжиг».

Для изготовления нового материала не нужно создавать каких бы то ни было новых уникальных установок. Его можно массово получать в промышленности уже сегодня. При этом хрупкость данного материала подразумевает то, что он легко разрушается. И легче всего рушиться будет аморфная фаза. А наночастицы при этом останутся целыми. То есть, поместив материал в условную шаровую мельницу, можно в больших количествах извлекать из него наноалюминий.

Столь фундаментальная на первый взгляд работа может иметь вполне практическое применение. Наноалюминий обладает несколькими важными особенностями: при поджигании экзотермическая (с выделением тепла) реакция у него начинается уже при 660 градусах Цельсия, хотя микронный порошок не реагирует до 1000 градусов. Скорость детонации наноалюминия почти на треть выше, а при добавлении его в ракетное топливо импульс ракеты увеличивается на 70 %. Одинаковый размер частиц очень важен при использовании их как основы для композитных материалов, потому что позволяет точнее контролировать свойства получаемого вещества. Кроме того, как и любой наноматериал, он весьма перспективен как катализатор.

Данную методику можно применить и к другим аморфным алюминиевым сплавам, отметил ученый. Это может привести к целому ряду новых композитов на основе аморфного алюминия.

Химические свойства алюминия и основные реакции

Нахождение в природе

Алюминий впервые получен химическим путем немецким химиком Ф. Велером в 1827 г., а в 1856 г. французский химик Сен-Клер Девиль выделил его электрохимическим методом.
Алюминий является самым распространенным в природе металлом. Содержание его в земной коре составляет 7,45% (по массе). Важнейшие природные соединения алюминия — алюмосиликаты, боксит, корунд и криолит.
Алюмосиликаты составляют основную массу земной коры. Продукт их выветривания — глина и полевые шпаты (ортоклаз, альбит, анортит). Основной состав глин (каолин) соответствует формуле Аl2O3•2SiO2•2Н2O.
Боксит — горная порода, из которой получают алюминий. Состоит главным образом из гидратов оксида алюминия Аl2O3•nН2O .

Физические свойства

Физические свойства алюминия хорошо изучены. Это — серебристо-белый легкий металл, плавящийся при 660°С. Он очень пластичен, легко вытягивается в проволоку и раскатывается в листы. Из алюминия можно изготовить фольгу толщиной менее 0,01мм. Алюминий обладает очень большой тепло- и электропроводностью. Сплавы алюминия с различными металлами обладают большой прочностью и легкостью.

Химические свойства

Алюминий очень активный металл. В ряду напряжений он стоит после щелочных и щелочноземельных металлов. Однако на воздухе он довольно устойчив, так как его поверхность покрывается очень плотной пленкой оксида, предохраняющей его от дальнейшего контакта с воздухом. Если с алюминиевой проволоки снять защитную оксидную пленку, то алюминий начнет энергично взаимодействовать с кислородом и водяными парами воздуха, превращаясь в рыхлую массу гидроксида алюминия. Эта реакция сопровождается выделением тепла. Очищенный от защитной оксидной пленки алюминий взаимодействует с водой с выделением водорода:

Алюминий хорошо растворим в разбавленных серной и соляной кислотах:

Разбавленная азотная кислота на холоду пассивирует алюминий, но при нагревании алюминий растворяется в ней с выделением монооксида азота, гемиоксида азота, свободного азота или аммиака, например:

Концентрированная азотная кислота пассивирует алюминий.
Так как оксид и гидроксид алюминия обладают амфотерными свойствами, то алюминий легко растворяется в водных растворах всех щелочей, кроме гидроксида аммония:

Порошкообразный алюминий легко взаимодействует с галогенами, кислородом и всеми неметаллами. Для начала реакций необходимо нагревание. В дальнейшем реакции протекают очень интенсивно и сопровождаются выделением большого количества тепла:

Сульфид алюминия может существовать только в твердом виде. В водных растворах он подвергается полному гидролизу с образованием гидроксида алюминия и сероводорода:

Алюминий легко отнимает кислород и галогены у оксидов и солей других металлов. Реакция сопровождается выделением большого количества тепла:

Процесс восстановления металлов из их оксидов алюминием называется алюмотермией. Алюмотермией пользуются при получении некоторых редких металлов, которые образуют прочную связь с кислородом (ниобий, тантал, молибден, вольфрам и др.).
Смесь мелкого порошка алюминия и магнитного железняка называется термитом. После поджигания термита с помощью специального запала реакция протекает самопроизвольно и температура смеси повышается до 3500°С. Железо при такой температуре находится в расплавленном состоянии. Эту реакцию используют для сваривания рельсов.

Получение

Впервые алюминий был получен восстановлением хлорида алюминия металлическим натрием:

В настоящее время его получают электролизом расплавленных солей. В качестве электролита служит расплав, содержащий 85— 90% комплексной соли 3NaF • A1F3 (или Na3AlFe) — криолита и 10–15% оксида алюминия Al2O3 — глинозема. Такая смесь плавится при температуре около 1000°С. При растворении в расплавленном криолите глинозем ведет себя как соль алюминия и алюминиевой кислоты и диссоциирует на катионы алюминия и анионы кислотного остатка алюминиевой кислоты:

При пропускании электрического тока катионы алюминия и натрия движутся к катоду — графитовому корпусу ванны, покрытому на дне слоем расплавленного алюминия, получаемого в процессе электролиза. Так как алюминий менее активен, чем натрий, то он восстанавливается в первую очередь. Восстановленный алюминий в расплавленном состоянии собирается на дне ванны, откуда его периодически выводят.
Анионы AlO3 3− и A1F6 3− движутся к аноду — графитовым стержням или болванкам. На аноде в первую очередь разряжается анион AlO3 3− :

Оксид алюминия вновь диссоциирует, и процесс повторяется. Расход глинозема все время восполняется. Количество криолита практически не меняется. Незначительные потери криолита происходят вследствие образования на аноде тетрафторида углерода CF4 . Электролитическое производство алюминия требует больших затрат электроэнергии (на получение 1 т алюминия расходуется около 20 тыс. квт • ч электроэнергии), поэтому алюминиевые заводы строят вблизи электростанций.

Применение

Алюминий находит самое широкое применение. Он используется в электротехнике, его сплавы, отличаясь большой легкостью и прочностью, применяются в самолето- и машиностроении, он все больше вытесняет стали в производстве теплообменных аппаратов, из него изготовляют фольгу, применяемую в радиотехнике и для упаковки пищевых продуктов. Алюминием покрывают стальные и чугунные изделия в целях предохранения их от коррозии: изделия нагревают до 1000° С в смеси алюминиевого порошка (49%), оксида алюминия (49%) и хлорида аммония (2%). Этот процесс называется алитированием. Алитированные изделия выдерживают нагревание°С, не подвергаясь коррозии.

Оксид алюминия Al2O3

Представляет собой белое вещество, обладающее высокой температурой плавления (2050°С). В природе оксид алюминия встречается в виде корунда и глинозема. Иногда встречаются прозрачные кристаллы корунда красивой формы и окраски. Корунд, окрашенный соединениями хрома в красный цвет, называют рубином, а окрашенный соединениями титана и железа в синий цвет — сапфиром. Рубин и сапфир являются драгоценными
камнями. В настоящее время их довольно легко получают искусственно.
Оксид алюминия обладает амфотерными свойствами, но он не растворяется в воде, кислотах и щелочах. При кипячении оксида алюминия в концентрированном растворе щелочи он частично переходит в раствор. Оксид алюминия переводят в растворимое состояние сплавлением со щелочами или с пиросульфатом калия:

Полученные сплавы растворяются в воде. При сплавлении оксида алюминия с поташом или содой образуются алюминаты, которые легко растворяются в воде:

Природный корунд — очень твердое вещество. Он применяется для изготовления наждачных кругов и шлифовальных порошков. Рубин используют для изготовления втулок часовых и других точных механизмов.
Глинозем используется как сырье для получения алюминия. Обезвоженный оксид алюминия применяется как адсорбент при очистке и разделении органических веществ методом хроматографии.

Гидроксид алюминия Al (ОН)3

Представляет собой белое вещество, которое при нагревании теряет воду, превращаясь оксид алюминия. Гидроксид алюминия обладает амфотерными свойствами. Свежеосажденный гидроксид легко растворяется в кислотах и щелочах (кроме гидроксида аммония):

Гидроксид алюминия является слабым основанием и еще более слабой кислотой, поэтому соли алюминия находятся в растворе только в присутствии избытка кислоты, а алюминаты — только в присутствии избытка щелочи. При разбавлении растворов водой эти соединения сильно гидролизуют.
Высушенный гидроксид алюминия теряет часть воды, не растворяется ни в кислотах, ни в щелочах и этим напоминает оксид алюминия.
Гидроксид алюминия обладает свойством поглощать различные вещества, поэтому его применяют при очистке воды.

анодирования 10 уникальных цветов

Крупнейший завод по производству анодированных алюминиевых изделий в Польше

Завод по анодированию алюминиевых изделий входит в состав Группы ROSA с 2009 года. Завод является крупнейшим предприятием данного типа в Европе. Открытие данного завода позволил компании ROSA представить на рынке освещения, широкий ассортимент алюминиевых, наружных осветительных приборов с антикоррозионными и декоративными свойствами.

Завод по анодированию ROSA специализируется на анодировании изделий из алюминия — листов, труб, профилей и иных конструктивных элементов, в десяти представленных цветах, электрохимической или интерферентной покраской, каждый из них с возможностью эффекта глянец. Классическая палитра цветов устойчива к внешним факторам, в.т. ультрафиолетовое излучение.

10 уникальных цветов анодирования

Критерии для анодированных элементов

Технические допуски. Самое высокое качество.

Технические допуски Европейского Общества Обработки Алюминиевых Поверхностей QUALANOD, совместно с правом на использование знака качества, также подтверждено высокое качество услуг, предоставляемых заводом по анодированию ROSA.

Процесс анодирования

Процесс анодирования можно разделить на три основных этапа:

  • подготовка поверхности путём обезжиривания, сатиновое (щелочное) травление или глянец, отбеливание
  • анодирование + дополнительная покраска
  • запечатывание.
Читать еще:  Техника резки металла

Данные этапы выполняются в специальных ваннах. Каждый из них требует отдельной, специально технологически подготовленной ванны, а между химическими процессами – происходит этап полоскания изделий.

Первый шаг на этапе подготовки поверхности является обезжиривание, которое состоит из удаления поверхностных масел алюминия и их производных, а также различных загрязнений, происходящих после обработки деталей. Далее, когда поверхность очищена, она подвергается щелочному протравливанию, которое направлено на удаление окисной пленки с поверхности изделия и придавая равномерную, матовую поверхность, декоративный внешний вид, что компенсирует видимость мелких дефектов после прокатки или процесса прессования, вальцовки , типа : полосы, термо полосы, а также мелкие царапины. Альтернативной отделкой сатиновых поверхностей является глянец. С помощью травления в смеси концентрированных кислот, осуществляется сглаживание структуры поверхности, что значительно уменьшает потускнение и осветляет поверхность металла и в результате придает эффект глянца.

Следующим процессом подготовки поверхности к анодированию является осветление (декапирование), конечной целью которого является удаление тонких, оксидных слоев и осадков, которые могли остаться после процессов сатинового (щелочного) травления или полировки, а удаление которых является необходимым для достижения однородной структуры оксидного слоя.

Анодирование заключается в создании на поверхности алюминия тонкого оксидного слоя в результате электрохимического процесса. Такая поверхность образуется в водном растворе серной кислоты, а анодированный элемент исполняет в этом процессе функцию аноды. Во время электролиза анод подается напряжению постоянного тока от заданной плотности, высвобождает кислород, который вступает в реакцию с металлом, образует прозрачное оксидное покрытие. Созданная таким образом оболочка внедряется на 2/3 своей толщины в поверхность металла и на 1/3 выступает над ней. Данный оксидный слой значительно толще оксидной пленки, возникающий в естественных условиях, благодаря чему алюминий получает эффективную защиту от дальнейшего окисления, то есть от коррозии. Пористая структура позволяет дополнительно придать изделию желаемый стойкий цвет электрохимическим или интерференционным способом с высокой устойчивостью к ультрафиолетовому излучению.

Электрохимическое окрашивание заключается в обработке изделия после анодирования в электролите, содержащем ионы соли олова. Количество металла в катодном цикле уменьшается, а оставшийся металл оседает на дне пор оксидной поверхности и придает ей стойкий цвет. Таким образом, мы получаем цветовую гамму от светлых до темных оттенков коричневого и черного.

Интерферентному окрашиванию предшествует операция по модификации формы пор анодного слоя. На этом этапе происходит изменение в структуре нижней части пористого слоя, придавая ей сферическую форму. Затем модифицированный слой подвергается процессу электрохимической окраски в ваннах на базе соли олова, обогащая этим цветовую палитру, получаемую при традиционной электрохимической окраске серого и зелёного оттенка. Этот метод использует явление интерференции — наложение друг на друга волн отраженного света, ведущего к увеличению или уменьшению амплитуды случайной волны. Изменение этой амплитуды путем соответствующего контролируемого модифицирования формы пор анодного слоя, которое позволяет получить соответствующий оптический эффект (цвет).

Заключительным этапом технологии анодирования является уплотнение/запечатывание, которое заключается в закрытии пористой, оксидной структуры. Применяемые среднетемпературные уплотнения/ запечатывание ( 86-88 °C ), которое заключается в погружении изделия в горячую, деминерализованную воду с ускоряющими добавками, целью которого является заполнение поверхности пор оксидом с образованием бемита. Благодаря уплотнению поверхность анодированного элемента становится герметичной и гладкой, что делает оксидный слой устойчивым на факторы атмосферной коррозии, а также снижает тенденцию к осаждению загрязнений на поверхности изделия.

Заключительным этапом технологии анодирования является уплотнение/запечатывание, которое заключается в закрытии пористой, оксидной структуры. Применяемые среднетемпературные уплотнения/ запечатывание ( 86-88 °C ), которое заключается в погружении изделия в горячую, деминерализованную воду с ускоряющими добавками, целью которого является заполнение поверхности пор оксидом с образованием бемита. Благодаря уплотнению поверхность анодированного элемента становится герметичной и гладкой, что делает оксидный слой устойчивым на факторы атмосферной коррозии, а также снижает тенденцию к осаждению загрязнений на поверхности изделия.

Для сохранения декоративных преимуществ, алюминиевые, анодированные продукты необходимо периодически чистить и обслуживать.

С 2017 года завод использует технологию, так называемую, сухого травления. Этот процесс происходит при использовании современной установки для матирования поверхности, а обрабатываемые элементы подвергаются абразивно-струйной обработке, благодаря чему, получается поверхность с тонким, сатиновым (блестящим) видом. Этот тип технологии может существенно устранять любые дефекты поверхности, образованные в экструзии или в процессах прокатки, вальцевания, таких как: полосы, термо полосы и.т.п. а также незначительные мелкие, механические повреждения, в виде царапин. Поверхность полученная таким способом, характеризуются гораздо высоким качеством, по сравнению с традиционным, химическим травлением. Применяемые технические решения позволяют струйной обработке металла толщиной 1 мм, происходить без повреждения поверхности.

Исследования

Устойчивость к излучению ультрафиолета*

— устройство для испытаний : Q-Sun Xe-3

-время эксплуатации образцов : 14 600 h

— временной эквивалент экспозиции для польских климатических условий — 20 лет *

-результат исследования: отсутствие изменения в цвете оксидных слоев

* Тест был проведен в лаборатории Исследования и Разработок компании ROSA, в соответствии с рекомендациями PN-EN ISO 6581 „Анодное окисление алюминия и его сплавов – Определение относительной устойчивости к ультрафиолетовому свету и высокую температуру крашенных анодных, оксидных слоев ”.

Устойчивость к коррозии:

Устройство для испытаний: соляная камера с концентрацией соли 5%

Концентрация соли в Балтийском Море — 0,8 %

Концентрация соли в Северном Море – 3%

Время экспозиции образцов 20 000 ч

Результат исследования: за период 20 000 ч экспозиции — следов коррозии не замечено

** исследования переведено в Лаборатории Исследования и Разработок — компании ROSA, в соответствии с нормами PN EN ISO 9227, метод NSS.

Очистка и обслуживание

В чём состоится очистка и обслуживание алюминиевых, осветительных опор? В целом, анодированные поверхности характеризуются высокой устойчивостью на загрязнения, однако содержание декоративной поверхности высоких опор во время эксплуатации, может потребоваться периодическая очистка. Для чего? Некоторые виды загрязнений, в виду своих свойств, остаются на поверхности опоры, тем самым ухудшают декоративные свойства. В случае опор, чаще всего,- это загрязняющие вещества, типичные для высокоиндустриальных областей: вещества, которые возникают в процессе эксплуатации дорог, промышленных заводов и.т.п. Частота очистки и обслуживания зависит в основном от решения пользователя. Подавляющее большинство внешних факторов, не могут отрицательно повлиять на качество и долговечность анодированной поверхности.

Важно! Для очистки и обслуживания анодированных опор необходимо использовать исключительно нейтральные средства pH (5-9). Кроме того, не следует использовать материалы и предметы, которые могут глубоко поцарапать , и тем самым повредить анодированный слой.

После удаления загрязнений, поверхность необходимо промыть чистой водой до полного удаления остатков чистящих веществ.

Пример очистки и обслуживания анодированных опор при использовании традиционных чистящих средств и обслуживания для алюминиевых, анодированных поверхностей. В случае, чрезвычайно тяжёлых для удаления загрязнений, часто образующихся при кристаллизации солевых соединений, рекомендуется использовать специально предназначенные для этого средства. Эти продукты, как правило, эффективно растворяют все типы загрязнений, не повреждая верхний анодированный слой. Примером такого применения может быть удаление солевого осадка из системы подачи воды с морской водой после процесса опреснения с поверхности анодированной опоры, установленной в Саудовской Аравии. Этот вид воды в своем составе содержит много минеральных соединений. Из-за высоких температур окружающей среды вода быстро испаряется, оставляя твердый осадок на поверхности опоры. На рисунке ниже показана анодированная конструкция опоры до и после очистки с помощью Calnex C.

Для удаления всех типов красок, клея, граффити и других остатков схожего типа веществ, лучше всего использовать продукты для удаления лакокрасочных покрытий. На рынке имеется широкий спектр растворителей, таких как, растворители на основе ацетона, нитро или спирта, которые эффективно растворяют эти примеси, оставаясь безопасными для поверхности опор.

Приведённый выше пример очистки поверхности опор от граффити и остатков клея от наклеек. Используя общедоступные продукты для удаления таких загрязнений, следы грязи были эффективно удалены без вмешательства в анодированное покрытие. После очистки от загрязнений, визуальных изменений не происходит, поверхность опоры остаётся в первозданном виде.

Архитектурные панели — анодированный фасад Художественного Университета в Познане

Это проект, в часть которого входила реконструкция действующих комплексных зданий на пересечении проспекта Марцинковскего ( Alei Marcinkowskiego) и улицы 23 февраля (ulicy 23 Lutego), в историческом центре города Познань недалеко от Старой рыночной площади, а также площади Свободы и Национального музея. Новое здание «B» и выставочного комплекса общей площадью около 6 тысяч м2. Оно содержит — дидактические и тренажерные залы и специализированные лаборатории. Внутренний дворик 4-х этажного здания «B», покрыт стеклянным куполом для организации выставочных экспозиций и мультимедийных мероприятий. Анодирование наружных фасадных панелей с усиленной сеткой графитного цвета и анодирование усиленных сеток, используемых в интерьере потолков, подвешиваемые внутри здания, также графитного цвета с сатиновой отделкой (без полировки).

Анодированные панели разного размера, общее количество в фасаде соответствует общей площади почти 1200 м2, а также почти 300 м2 подвесных потолков.

Проект является примером использования анодированного алюминия, графитного цвета, который является одним из интерферентных цветов, изготавливаемых в Польше только компанией ROSA.

Отличие литой алюминиевой посуды от штампованной

Cегодня мы поговорим о видах алюминиевых сковород.

Зачастую покупатель не видит разницы между литой сковородой и штампованной, а разница между ними большая. Судите сами.

Литая посуда изготавливается из литейного пищевого сплава алюминия и кремния согласно требованиям ГОСТ, сплав безопасен и предназначен для прямого контакта с пищевыми продуктами. В процессе производства расплавленный металл заливается в специальные формы и при остывании приобретает вид изделия. Таким образом, при литье получается функциональная посуда с толстым дном и стенками до 8 мм, а также красивым бортом по кромке, обеспечивающим дополнительную прочность.

Штампованная посуда изготавливается путем сгибания листов чистого алюминия и формовки из них корпусов изделий простых геометрических форм при помощи специальных штампов. Благодаря данной технологии себестоимость каждого изделия невысока, посуда получается легкой и тонкой. Металл, сформованный в холодном состоянии, повреждается на молекулярном уровне, в связи с этим штампованная посуда может легко деформироваться под воздействием тепла и механических ударов.

Разница между литыми и штампованными изделиями присутствует и в технологиях нанесения антипригарных покрытий. На штампованном изделии антипригарный слой наносится методом наката покрытия на алюминиевые заготовки – плоские диски металла. При формовке изделий целостность антипригарного покрытия на молекулярном уровне также нарушается, в связи с этим посуда быстро теряет свои антипригарные свойства.

На литую посуду антипригарные покрытия наносятся методом напыления: жидкий антипригарный состав наносится на уже сформированный корпус пульверизатором с последующей сушкой и спеканием. Перед нанесением литые изделия проходят специальную обработку поверхности для лучшего сцепления покрытий с корпусом. Нанесенное методом напыления покрытие равномерно накладывается на корпус изделия, толщина покрытия значительно выше за счет технологических особенностей, поэтому посуда долго сохраняет свои антипригарные свойства.

Литая посуда подходит для всех видов кухонных плит, для индукционных плит производится специальная литая посуда со встроенным в дно изделия индукционным диском. Литая посуда хорошо прогревается и долго сохраняет тепло, поэтому приготовленная в ней еда получается вкуснее. В отличие от штампованных, термоаккумулирующие свойства литых изделий значительно выше за счет присутствия в составе металла кремния. Литая посуда имеет толстые 4 мм стенки и 6-7 мм дно, таким образом, пища равномерно прожаривается. У штампованных изделий толщина дна и стенок одинаковая: пища может пригорать на дне или не до конца прожариваться на поверхности.

Поскольку штампованная посуда очень тонкая, фактически она рекомендуется только для подогрева пищи. Штампованную посуду лучше использовать на газовых кухонных плитах, т.к. на других видах плит она быстро деформируется.

Отличить литые изделия от штампованных просто. Литая посуда гораздо тяжелее, у штампованной на стенках всегда присутствует характерная металлическая кайма. Кроме того, следует обращать внимание на информацию на упаковке.

Получение алюминия

Производство и получение алюминия

Металлический алюминий получают в три стадии:

  • Получение глинозема (Al2O3) из алюминиевых руд;
  • Получение алюминия из глинозема;
  • Рафинирование алюминия.

Получение глинозема

Около 95 % всего глинозема получают из бокситовых руд.

Бокситовая руда

Боксит (фр. bauxite) (по названию местности Baux на юге Франции) – алюминиевая руда, состоящая из гидроксидов алюминия, оксидов железа и кремния, сырьё для получения глинозёма и глинозёмосодержащих огнеупоров. Содержание глинозёма в промышленных бокситах колеблется от 40 % до 60 % и выше. Используется также в качестве флюса в чёрной металлургии.

Рисунок 1 – Бокситовая руда

Обычно бокситы представляют собой землистую глиноподобную массу, которая может иметь полосчатую, пизолитовую (гороховидную) либо однородную текстуру. В обычных условиях выветривания полевые шпаты (минералы, составляющие большую часть земной коры и являющиеся алюмосиликатами) разлагаются с образованием глин, но в условиях жаркого климата и высокой влажности конечным продуктом их разложения могут оказаться бокситы, т. к. подобная обстановка благоприятствует выносу щелочей и кремнезёма, особенно из сиенитов или габбро. Бокситы перерабатывают в алюминий поэтапно: сначала получают оксид алюминия (глинозём), а затем металлический алюминий (электролитическим способом в присутствии криолита).

Основные примеси в бокситах это Fe2O3, SiO2, TiO2. К малым примесям бокситов относят: Na2O, K2O, CaO, MgO, редкоземельные элементы, Cr, P, V, F, органика.

Обычно бокситы классифицируют:

  • по цвету;
  • по основному минералу (чаще они бывают смешанными);
  • по возрасту.

Основными критериями качества алюминиевой руды являются :

  1. Кремниевый модуль (Мsi = Al2O3/SiO2 (% масс.)). Чем больше кремниевый модуль тем лучше качество (Мsi = 7);
  2. Содержание железа в пересчете на Fe2O3. Если содержание Fe2O3около 18 % масс., то боксит считается высокожелезистым. Чем больше содержание железа труднее добыть бокситы;
  3. Содержание серы. Наличие большого количества серы усложняет переработку боксита;
  4. Содержание карбонатов в пересчете на CO3 (2-) . Наличие большого количества карбонатов усложняет переработку боксита.
  • в производстве глинозема;
  • в производстве абразивных материалов;
  • в производстве огнеупорных материалов;
  • в качестве флюса для выплавки мартеновской стали;
  • для сушки газов и чистки нефти от серы;
  • в качестве красителя.

На сегодняшний день главными поставщиками боксита являются:

  • Австралия – там находятся также огромные залежи Fe, Au, U, Ni, Co, Cuи др. Выгоднее покупать сырье у Австралии, чем перерабатывать свое.
  • Гвинея – У России есть несколько купленных мест.
  • Центральная Америка: Гайана, Ямайка, Суриман.
  • Бразилия.

В Европе все месторождения истощены. Осуществляются поставки бокситов из Греции, но данное сырье является сырьем низкого качества.

Рисунок 2 – Запасы бокситов в мире

Ниже представлен основных месторождений алюминиевых руд в России.

  • Первое месторождение было открыто в 1914 г. под Сант-Петербургов, рядом с городом Тихвин. На данном месторождении было построено 6 заводов. Самый большой — это Волховский алюминиевый завод. На сегодняшний день Тихвинское месторождение истощено и работает в основном на привозном сырье.
  • В 1931 г. было открыто уникальное Северо-Уральское месторождение высококачественных бокситов (СУБР). Оно послужило базой для строительства в 1939 г. Уральского алюминиевого завода (УАЗ). А на основе Южно-уральского бокситового рудника (ЮУБР) был построен Богословский алюминиевый завод (БАЗ).
  • Североонежское месторождение находится по дороге на Кольский полуостров. В Плане есть, но дата строительства неизвестна.
  • Висловское месторождение – чистоглинистое месторождение каолитного типа. Для глинозема не используется.
  • Тиманское месторождение (Республика Коми, Варкута). Канадцы заинтересованы в данном месторождении, поэтому планируют строительство заводов («Коми Суал» — холдинг).
Читать еще:  Наварка резины на металлические ролики

Получение глинозема из бокситовых руд

Поскольку алюминий амфотерен, глинозем получают тремя способами:

  • щелочным,
  • кислотным;
  • электролитическим.

Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5 – 6 %) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рисунке 3.

Рисунок 3 – Схема получения глинозема по способу Байера

Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169 – 170 °С может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:

1. Подготовки боксита, заключающийся в его дроблении и измельчении в мельницах; в мельницы подают боксит, едкую щелочь и небольшое количество извести, которое улучшает выделение Al2O3; полученную пульпу подают на выщелачивание;

2. Выщелачивания боксита (в последнее время применяемые до сих пор блоки автоклав круглой формы частично заменены трубчатыми автоклавами, в которых при температурах 230 – 250 °С (500 – 520 К) происходит выщелачивание), заключающегося в химическом его разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:

содержащийся в боксите кремнезем взаимодействует со щелочью и переходит в раствор в виде силиката натрия:

в растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100 °С;

3. Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6 – 1,0 т красного шлама (сухого остатка);

4. Разложения алюминатного раствора. Его фильтруют и перекачивают в большие емкости с мешалками (декомпозеры). Из пересыщенного раствора при охлаждении на 60 °С (330 К) и постоянном перемешивании извлекается гидроокись алюминия Al(OH)3. Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси – затравки:

5. Выделения гидроокиси алюминия и ее классификации; это происходит в гидроциклонах и вакуум-фильтрах, где от алюминатного раствора выделяют осадок, содержащий 50 – 60 % частиц Al(OH)3. Значительную часть гидроокиси возвращают в процесс декомпозиции как затра­вочный материал, которая и остается в обороте в неизменных количествах. Оста­ток после промывки водой идет на кальцинацию; фильтрат также возвращается в оборот (после концентрации в выпарных аппаратах – для выщелачивания новых бокситов);

6. Обезвоживания гидроокиси алюминия (кальцинации); это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150 – 1300 °С; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:

200 °C – 950 °С – 1200 °С.

В окончательно прокаленном глиноземе содержится 30 – 50 % α-Al2O3 (корунд), остальное γ-Al2O2.

Этим способом извлекается 85 – 87 % от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 ° С [7].

Получение алюминия электролизом

Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970 °С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рисунок 4). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись угле­рода (CO) или двуокись углерода (CO2). На практике находят применение два типа анодов:

  • самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25 – 35 % каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
  • обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900 × 600 × 500 мм массой около 1,1 т).

Рисунок 4 – Схема электролизера

Сила тока на электролизерах состав­ляет 150 000 А. Они включаются в сеть последова­тельно, т. е. получается система (серия) – длинный ряд электролизеров.

Рабочее напряжение на ванне, состав­ляющее 4 – 5 В, значительно выше на­пряжения, при кото­ром проис­ходит раз­ло­жение окиси алю­миния, поскольку в процессе рабо­ты неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рисунке 5.

Рисунок 5 – Баланс сырья и энергии при получении 1 т алюминия

Вреакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl3, растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и пода­ется для вторичного использования; алюминий осаждается на катоде.

Преимуществами данного метода перед существующим электролизом жидкого крио­литоглиноземного расплава (Al2O3, растворенная в кри­олите Na3AlF6) считают: экономию до 30 % энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al2O3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора [7].

Получение рафинированного алюминия

Для алюминия рафини­рующий электролиз с разло­жением водных солевых рас­творов невозможен. Пос­кольку для некоторых целей степень очистки промыш­лен­ного алюминия (Al 99,5 – Al 99,8), полученного электролизом криолитогли­нозем­ного расплава, недостаточна, то из промышлен­ного алюминия или отходов металла путем рафинирова­ния получают еще более чистый алюминий (Al 99,99 R). На­иболее известен метод рафинирования — трехслой­ный электролиз.

Рафинирование методом трехслойного электролиза

Одетая стальным листом, работающая на постоянном токе (рисунок 6) ванна для рафиниро­вания состоит из уголь­ной подины с токопод­водами и теплоизоли­рующей магнезитовой футеровки. В проти­воположность электро­лизу криолитоглино­земного расплава ано­дом здесь служит, как правило, расплавлен­ный рафинируемый ме­талл (нижний анодный слой). Электролит сос­тавляется из чистых фторидов или смеси хлорида бария и фто­ридов алюминия и нат­рия (средний слой). Алюминий, растворяю­щийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.

Рисунок 6 — Схема электролизера с передним горном для рафинирования алюминия (по Фульда — Гинзбергу)

1 – алюминиевый расплав; 2 – электролит; 3 – рафинированный алюминий высокой частоты; 4 – катод из графита; 5 – магнезитовая стена; 6 – передний горн; 7 – изолирующий слой; 8 – боковая изоляция; 9 – угольная подина; 10 – анодный токопровод; 11 – изоляция подины; 12 – железный короб; 13 – крышка

Ванна работает при 750 – 800 °С, расход электроэнергии составляет 20 кВт ч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.

Металл анода содержит 25 – 35 % Cu; 7 – 12 % Zn; 6 – 9 % Si; до 5 % Fe и незначительное количество марганца, никеля, свинца и олова, остальное (40 – 55 %) – алюминий. Все тяжелые металлы и кремний при рафинировании остаются в анод­ном слое. Наличие магния в электролите приводит к нежелательным изменениям состава электролита или к сильному его ошлакованию. Для очистки от магния шлаки, содержащие магний, обрабатывают флюсами или газообразным хлором.

В результате рафинирования получают чистый алюминий (99,99 %) и про­дукты сегрегации (зайгер-продукт), которые содержат тяжелые металлы и крем­ний и выделяются в виде щелочного раствора и кристаллического остатка. Щелоч­ной раствор является отходом, а твердый остаток применяется для раскисления.

Рафинированный алюминий имеет обычно следующий состав, %: Fe 0,0005 – 0,002; Si 0,002 – 0,005; Cu 0,0005 – 0,002; Zn 0,0005 – 0,002; Mg следы; Al остальное.

Рафинированный алюминий перерабатывают в полуфабрикат в указанном составе или легируют магнием (таблица 1).

Таблица 1 – Химический состав алюминия повышенной чистоты и первичного алюминия по DIN 1712, лист 1

Какой радиатор выбрать?

Чтобы у вас дома даже в самые холода было комфортно и уютно нужно правильно выбрать радиатор: конструкцию, материал и размер для каждого помещения. Как же выбрать из многообразия вариантов?

Шаг 1: Выбираем тип радиатора

Алюминиевый радиатор

Достоинства:
  • Для него характерна низкая инерционность (быстро нагревается и быстро остывает) и способность выдерживать относительно высокое давление. Эти особенности делают алюминиевый радиатор универсальным отопительным прибором. Он может быть использован как в автономной, так и в центральной системе отопления.
  • Дополнительно можно приобрести термоголовки и индивидуально задавать температуру для каждого помещения. Это позволит экономить на топливе.
  • Алюминиевые радиаторы обладают эффектным внешним видом, который подойдет под любой интерьер помещения. Эти радиаторы являются секционными — от 4 до 12 секций. И если у вас возникнет необходимость в дополнительных секциях, вы сможете их приобрести в магазинах «Бауцентр». Но надо учитывать, что секционные радиаторы можно раскрутить только напополам (то есть если радиатор состоит из 10 секций, то вы можете купить отдельно 5 секций, если 12 — то 6 секций и т.д.)

Важно! При установке алюминиевых радиаторов важно не допустить контакта алюминия с медными переходниками и фитингами, поскольку в такой паре наступает коррозия металла с возможным выделением водорода.

Биметаллический радиатор

Достоинства:
  • Идеален для всех систем отопления — как для центральной, так и для автономной. Что значит биметалл? Корпус радиатора сделан из алюминия, благодаря чему он обладает высокой теплоотдачей, а внутренние коллекторы (места, где радиатор соприкасается с теплоносителем) выполнены из стали. Стальной коллектор позволяет без опаски устанавливать данный радиатор в центральную систему отопления. Биметаллический радиатор не боится некачественного теплоносителя и выдерживает высокое давление, 25-50 атмосфер, в зависимости от производителя. Этот вид радиатора долговечнее стального и алюминиевого.
  • Биметаллические радиаторы выглядят так же эстетично как алюминиевые и подойдут под любой интерьер помещения. Они тоже являются секционными — от 4 до 12 секций. Можно приобрести дополнительные секции (эти радиаторы также раскручиваются только напополам.).

Важно! Биметаллические радиаторы более тяжелые, чем алюминиевые и стальные, поэтому требуют большего количества креплений при монтаже.

Стальной радиатор

Достоинства:
  • Подходит для автономной системы отопления. В систему центрального отопления устанавливать можно, но при условии, что теплоноситель соответствует ГОСТ-ам, а давление в центральной системе отопления не будет превышать 9 атмосфер. То есть такие радиаторы можно ставить только в малоэтажные дома. В высокоэтажных зданиях с центральной системой отопления давление превышает 9 атмосфер.
  • Огромный выбор размеров – от очень крупного до самого маленького, позволяет подобрать именно тот стальной панельный радиатор, который подойдет для того помещения, которое нужно обогреть.
  • Также стальной радиатор имеет очень низкую тепловую инерционность (быстро нагревается и быстро остывает), и при использовании термоголовок на стальных радиаторах получается наибольшая экономия тепловой энергии.
  • Стальные радиаторы подойдут к дизайну любого помещения. Эти радиаторы панельные и имеют множество вариаций размеров, что дает возможность подобрать стальной радиатор под любую потребность.

Внимание! У данного радиатора есть важная особенность — оборудование из стали плохо переносит редко посещаемые помещения. Если спустить воду из системы на срок более 2-х недель, то попавший воздух приведет к активной коррозии, которую невозможно будет остановить.
Есть и свое ограничение — нарастить или уменьшить такой радиатор не получится, только полностью его заменить при необходимости.

Шаг второй: Считаем количество секций

Важный критерий выбора радиатора — его тепловая мощность. Она указана на ценнике или в паспорте радиатора. Как правильно подобрать радиатор под Ваши потребности?
Необходимо вспомнить размер помещения, куда планируется его установка. Приблизительный расчет таков: 1000 Вт на 10 м кв (для угловых комнат, помещений с обширным остеклением и плохой теплоизоляцией берем 1200-1300 Вт на 10 м кв).
В зависимости от расчетной тепловой мощности выбираем радиатор нужного размера с необходимым количеством секций.
Например, чтобы обогреть помещение 15 м кв, потребуется прибор мощностью 1500 Вт.

Шаг третий: Выбираем вид подключения и размер радиатора

В зависимости от того, в каком месте будет установлен радиатор, а также как и на какой высоте расположены подводящие трубы системы отопления, определяется: вид подключения радиатора (нижняя или боковая подводка), а также размер радиатора (межосевое расстояние – т.е. расстояние между трубами подключения). Он может составлять от 200 до 2000 мм. Это число обязательно указывается в маркировке каждой модели.

Шаг четвертый: Выбираем место установки

Обычно нагревательные приборы находятся около окон под подоконниками. Выступающая над батареей подоконная доска может препятствовать движению вверх теплого воздуха. Поэтому радиатор рекомендуется устанавливать около наружной стены на высоте 10 см от пола так, чтобы между ним и подоконником был зазор не менее 8 см.
Часто из эстетических соображений около батареи ставят различные декоративные экраны, загораживающие нагревательный прибор. В этом случае экран становится препятствием для излучаемой радиатором тепловой энергии, и помещение начинает обогреваться только за счет конвективного теплообмена, что естественно снижает его эффективность. В этом случае мы рекомендуем брать более мощный радиатор для компенсации потери тепла.

Шаг пятый: Самостоятельно регулируем температуру

Можно самостоятельно регулировать и задавать оптимальную температуру в разных комнатах, согласно их использованию, и при этом беречь значительную часть энергии. Это легко сделать с помощью термостатической головки, установленной на термостатический вентиль на подводе к радиатору отопления.
Термостатическая головка, установленная с радиатором, регулирует мощность обогрева в соответствии с заданной температурой. Термостатический вентиль, тот на который ставится термоголовка, не регулирует расход теплоносителя – он либо открыт, либо закрыт. Таким образом, остается лишь установить желаемый уровень температуры в помещении (путём поворота термоголовки на определенную цифру) и термоголовка, в зависимости от температуры окружающей среды, самостоятельно будет её регулировать – открывая или закрывая путь теплоносителю к радиатору отопления. Важно! При установке необходимо, чтобы температура воздуха, окружающего термоголовку, была выставлена правильно, отражая реальную температуру помещения, тогда вся система в целом будет работать как положено.

Больше подробностей об использовании термоголовки — в наших советах!

Оптимальное решение для каждого дома!

Для коттеджной застройки и домов с индивидуальными тепловыми пунктами можно использовать все типы отопительных приборов, при условии, что вы правильно учли при проектировании рабочее и опрессовочное давление, на которое рассчитан выбранный радиатор, а также не забыли о небольших технических нюансах, свойственных каждому типу радиаторов, например, таких как повышенное газовыделение в алюминиевых радиаторах.
В современных многоэтажных домах желательно использовать биметаллические и алюминиевые радиаторы, отличающихся элегантным дизайном, высокой прочностью и коррозийной стойкостью.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector