Bktp-omsk.ru

Делаем сами
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчики холла принцип работы применение

Датчик холла схема и принцип работы

Современные датчики обладают, обычно, щелевой конструкцией. На одной стороне щели располагается проводник, по нему пропускают электрически ток, а на другой стороне расположен постоянный магнит. Когда ток попадает в магнитном поле, на него действует сила Лоренца, если при этом в магнитное поле находиться тонкая пластинка, то на ее сторонах появиться разность потенциалов.

В зазоре между пластинкой и магнитом расположен экран. Он предназначен для замыкания силовых линий. Если его убрать, то разность потенциалов с металлической пластины будет, сниматься. Если экран расположен в зазоре, то силовые линии замкнуться через него. Ну а при прохождении экрана (в его роли часто используется – лопасть ротора) через зазор, индукция будет нулевая на микросхеме, а напряжение сгенерируется на выходе устройства.

Принцип работы позволяет применять эту конст=рукцию в виде регистрирующего устройства без механического контакта с механизмом в движении, что увеличивает срок эксплуатации по сравнению с другими похожими, но работающих на других принципах преобразователях.

Учитывая возможности современной электроники датчики Холла бывают: цифровые и аналоговые. Обычные преобразователи (аналоговые) изменяют индукцию поля. От полярности и силы магнитного поля зависит величина, которую выдает преобразователь.

Цифровые датчики отличаются полным отсутствием магнитного поля. Его принцип работы состоит в том, что датчик выдает логическую единицу, когда индукция достигает пороговой величины, а ноль, когда установленный номинал не достигнут. Большим минусом цифрового преобразователя считается его низкой чувствительность.

В качестве примера использования, на картинке ниже показана электрическая цепь бесконтактной системы зажигания автомобиля, с преобразователем Холла.

Преобразователи Холла получили широкое распространение в авиации, машиностроение, и в автомобильной электрике. Все это, благодаря высоким показателям надежности и точности, ну и достаточно низкой стоимости. В автомобиле датчик используется для контроля за положением различных узлов и механизмов.

В авиации используется возможность ориентироваться на полюса на северный и южный, поэтому его все еще используют как датчик скорости или направления движения, несмотря на GPS и Глонасс.

Эту схему можно использовать в масленых обогревателях. В случае их случайного опрокидывания датчик сформирует сигнал на отключение последнего.

Питается схема от бестрансформаторного блока питания. Выходное напряжение стабилизируется с помощью стабилитрона VD3, переменная составляющая отфильтровывается емкостью С3. Напряжение номиналом около 5 вольт поступает на первую ножку преобразователя. Когда магнит находится рядом с датчиком, его магнитное поле оказывает воздействие на преобразователь и на его третьем выходе присутствует напряжение близкое к питающему. Светодиод HL1 загорается и оптотиристор оптрона U1 открыт, что приводит к отпиранию симистора VS1 и подключению тэна обогревателя к сети переменного напряжения 220В. В случае наклона корпуса начинает поворачиваться маятник (Фото 2 3)на оси 1. На маятнике закреплен кусочек магнитной резины, от старого вентилятора (см. Фото 1). Ось с маятником закреплена на плате со стороны радиокомпонентов. Что бы маятник не слетел с оси, на его конец надеты несколько шайб, а наружная шайба припаяна.

Как только магнит отходит от датчика, магнитный поток от магнита ослабевает и в определенном положении на выходе три преобразователя напряжение будет почти нулевое. Светодиод потухнет, оптосимистор и мощный симистор закроются. Обогреватель отключится от сети. Если вернуть обогреватель в вертикальное положение, то обогреватель снова включится.

Импульсный преобразователь скорости и направления вращения преобразует величины скорость и направление вращения деталей механизма в общий электрический сигнал для последующей передачи, измерения и отображения параметров работы. Системы автоматики могут применять преобразователь для включения в петлю обратной связи. Информация, следующая от датчика, требуется для формирования сигналов в системах регулировки и стабилизации параметров перемещения различных механических узлов объекта. Применения такого преобразователя требует осуществлять контроль оборотов выходных валов редукторов, определение направления вращения от двух и выше механизмов, учет расхода жидкости и многие подобные приборы. Информация с преобразователя передается по трем проводам, с помощью которых поступает питание и идет сигнал частоты и направления вращения в фиксирующий прибор системы автоматического контроля и управления. Преобразователь может использоваться в системах автоматизации, транспортных системах и т.п.

В основе работы схемы лежит преобразование перемещения в сигнал которое выполняет микросхема с эффектом Холла SS526DT. Микросборка содержит два полупроводниковых элемента, генерирующих разность потенциалов при попадании в магнитное поле. Она позволяет вычислить скорость и направление вращения. Информация идет в схему датчика с двух выходов микросборки в цифровом виде: скорость движения соответствует частоте следования импульсов с выхода Speed, направлению соответствует логический уровень сигнала на выходе Direction.

Упрощенная конструкция датчика скорости и направления вращения.

Вращательное перемещение воспринимает вал преобразователя через зафиксированную на нем шестеренку. На валу имеется диск, в котором имеются постоянные магниты. Установлены магниты так, что их полюса чередуются для правильной работы микросборки SS526DT. Чем больше магнитов на диске, тем лучше дискретность и, поэтому, увеличивается возможность регистрации низкоскоростных перемещений. SS526DT монтируется на печатной плате, соединенной проводами с основной схемой преобразователя, элементы которой размещены на второй печатной плате.

С выхода направления следует сигнал, передающий данные о скорости оборотов за счет частоты импульсов, а данные о направлении вращения передается с помощью полярности импульсов.

Т.к в схеме имеется источника двуполярного напряжения питания выходной сигнал размахом пять вольт может иметь как отрицательную, так и положительную полярность.

Схема преобразует сигнал идущий от датчика Холла в выходной сигнал датчика скорости и направления вращения, обеспечивает нормальную нагрузочную способность по току. Для снижения вероятных помех, оказывающих воздействие на кабель импульсного датчика, сопротивление приёмника сигнала должно быть достаточно низким. Питание преобразователя осуществляется по двум проводам. Третий применяется для передачи информационного сигнала, полярность которого меняется относительно общего провода питания. Датчик Холла генерирует сигнал, передающий информацию о направлении вращения, упровляющий переключателем К1. В зависимости от уровня сигнала К1 подает К2 положительный или отрицательный уровень напряжение. Сигнал скорости управляет переключателем К2. Частота сигнала скорость, формируется К2, соответствует половине магнитов, расположенных на диске датчика.

Логические элементы усиливают сигнал направление, идущий от датчика Холла. Другие элементы управляют светодиодами оптронов, один из которых срабатывает на замыкание, а другой на размыкание. При нулевом логическом уровне сигнала Направление светодиоды оптронов не горят. Поэтому замкнуты контакты оптрона на размыкание, на контакты оптрона сигнала Скорость поступает + 5 вольт от встроенного двухполярного ИБП. При логической единице сигнал Направление через светодиоды оптронов заставляет срабатывать соответствующие цепи, выходной оптрон подключается к -5 вольт. Сигнал Скорость через усиливающий элемент следует на управление выходным оптроном. Под действием сигнала скорость с выхода преобразователя следуют импульсы, полярность которых задается сигналом Направление. Использование оптрона на выходе преобразователя дает возможность увеличить нагрузочную способность, что позволяет передавать сигнал с большим током для повышения уровня помехоустойчивости.

Для увеличения уровня помехозащищенности параллельно светодиодам рекомендуется подсоединить резисторы, увеличивающие ток, идущий по проводу “Скорость/направление”.

Сигнал Направление идет с выхода D микросборки с эффектом Холла, DA2. Единичный логический уровень Направление преобразуется инвертором DD1, в низкий на выводе 12. Светодиод VK1.2 пработает при появлении единичного логического уровня на десятом выводе DD1. Одновременно с этим блокируется работа светодиода оптрона VK1.1, так как на анод светодиода поступает напряжение нулевого логического уровня. Благодаря соединению светодиодов оптронов с логическим элементом сигнал Направление устанавливает, через какой из оптронов будет идти сигнал, с вывода 10 DD1. Сигнал скорости оборотов следует с выхода S DA2 на вход инвертора DD1. Высокий уровень импульсов, идет с вывода 10 микросхемы DD1, заставляет течь ток через сопротивление R4 и светодиод VK1.2. Функции оптронов разделяются: оптрон VK1.1 генерирует сигнал положительной полярности на третьем контакте клеммы XT1, VK1.2 – отрицательной. В схему преобразователя входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание. Емкостисглаживают помехи, снижая их влияние на формирование выходного сигнала. Сопротивления R1, R2 задают выходной ток импульсного датчика. Их номинал можно перераспределить в зависимости от входной цепи приёмника для их согласования. Схема использует один сдвоенный оптрон VK1, что экономит площадь печатной платы и сформировать сигналы Скорость и Направление вращения, используя один радиоэлемент.

Что такое датчик Холла и где он используется

Принцип действия и типы

Использование сенсоров в различных устройствах (в планшете, в частности) объясняется их способностью реагировать на изменения поля и отключаться при закрытии магнитной крышки чехла. Благодаря этому свойству они устанавливаются и в стиральных машинах, позволяя контролировать скорость вращения барабана. Если выразиться простым языком – здесь датчик Холла используется как тахометр.

Историческая справка

Чтобы понять принцип работы этого элемента, потребуется небольшой экскурс в историю. В 1879 году американский физик Холл открыл интересное явление, связанное с поведением проводника с током в магнитном поле. Проверка показала, что если через помещенную между магнитами медную пластину пропускать ток, то на ее боковых гранях появляется разность потенциалов. Возникает закономерный вопрос: как проверить это напряжение в домашних условиях?

Оказалось, что на практике его можно измерить мультиметром или любым другим прибором, имеющим соответствующие пределы. То же самое можно сделать любым подходящим тестером или подобным ему прибором.

Подключение измерителя подтверждает то, что движущиеся электроны под действием магнитного поля отклоняются в сторону (перпендикулярно направлению их движения).

Важно! Величина этого отклонения или разность потенциалов пропорциональна «мощности» магнитов и силе тока через пластину.

На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля. На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия.

Классификация

Важно понимать, какие бывают датчики Холла, и по какому принципу их принято классифицировать. По особенностям работы и тому для чего он нужен или по назначению, датчик Холла может иметь различные исполнения. Одна из разновидностей – аналоговые приборы, вырабатывающие на выходе непрерывный сигнал.

В отличие от них цифровой элемент имеет только два дискретных состояния («ноль» и «единица»). Эта разновидность прибора может быть униполярной или иметь биполярный тип. Первая из них срабатывает при обнаружении поля любой полярности и отключается при его исчезновении. То есть униполярный цифровой сенсор реагирует только на отсутствие или наличие магнитной напряженности. Рассмотренные особенности каждого из подвидов также помогают понять, что это такое – датчик Холла.

Униполярные сенсоры переключаются в «единицу» лишь при достижении полем порогового уровня и не способны определять его наличие при слабых напряженностях. Указанное свойство – существенный минус таких приборов, заметно ограничивающий сферу их применения. Биполярный датчик срабатывает с учетом полярности магнитного поля, одна из которых включает его, а другая – выключает.

Условное графическое обозначение приборов этого класса приведено на фото ниже:

Устройство и примеры использования

Простейшая система с датчиком Холла включает в свой состав следующие элементы:

  1. Постоянный магнит (его функция – создание магнитного поля).
  2. Подвижный ротор с лопастями или зубцами.
  3. Особый стержень из магнитного материала (магнитопровод).
  4. Пластиковый корпус.

Помимо этого, техническая характеристика датчика предусматривает применение микросхем, задействованных в измерительном процессе.

Понять принцип работы этого прибора удается, если ознакомиться с подробной схемой включения датчика Холла в зоне проведения измерений. Схема подключения и суть работы сенсора может быть представлена следующим образом:

  • В зазоре, образованном половинками магнитопровода, перемещаются металлические лопасти ротора.
  • При их вращении происходит периодическое шунтирование магнитного потока.
  • Встроенной микросхемой предусмотрено определение нулевого показателя индукции (в эти моменты напряжение на ее выходе максимально).
  • По частоте таких всплесков, подсчитываемой той же микросхемой, судят о скорости вращения контролируемого объекта (двигательного вала в мотоцикле, например).

Чтобы этот процесс протекал нормально – при включении сенсора в измерительную цепь должна учитываться цоколевка данного образца (она бывает разной).

Обобщая рассмотренную схему, следует предположить, что датчики этого класса способны измерять скорость вращения коленвала любого движущегося средства. Универсальность сенсора, не исключающая возможности его установки в скутере, например, позволяет применять датчик Холла не только в сложных технических устройствах, но и в обычной бытовой технике.

Применение в системе зажигания и стиральных машинах

При использовании датчика Холла в системе зажигания автомобиля с его помощью удается фиксировать момент размыкания трамблера. В данном случае он работает как аналоговый преобразователь, определяющий мгновения прерывания бортового питания. На этом же принципе базируется его применение в рабочих модулях стиральной машины, что позволяет по скорости вращения барабана определять увеличение веса белья.

Читать еще:  Как правильно согнуть профильную трубу

Датчики Холла устанавливаются и в некоторых образцах измерительной аппаратуры. Чаще всего ими комплектуются бесконтактные клещи, применяемые для измерения тока в проводниках. Встроенный прибор реагирует на изменение электромагнитного поля, образующегося вокруг силового кабеля. Кроме того, он подходит для ручки газа электровелосипеда, позволяя контролировать угол ее поворота.

В бытовых условиях

В клавиатурах компьютеров эти приборы обеспечивают бесконтактный способ снятия информации. Сенсор, входящий в состав кулера бытового ПК, способен управлять полярностью обмоток ротора, то есть менять направление его вращения.

При использовании такого элемента в смартфоне, в частности, он обеспечивает выключение устройства при помещении его в чехол с «магнитной» застежкой.

Рассматривая области применения датчики Холла простыми словами можно сказать, что его использование в технической сфере практически ничем не ограничено. В электронном конструкторе Ардуино, например, имеется набор с таким датчиком, позволяющий на практике проиллюстрировать эффект Холла.

Это не единственный пример его использования в целях обучения, помогающий начинающим пользователям понять, как подключить и использовать сенсоры полевых структур.

В заключение отметим, что к недостаткам датчиков Холла относят их чувствительность к электромагнитным помехам, нередко возникающим в рабочих цепях. Кроме того, использование сложных электронных модулей в конструкции прибора в какой-то мере влияет на его надежность, несколько снижая ее. Эти минусы сенсора не рассматриваются как его дефекты, а просто учитываются при работе с аппаратурой.

Теперь вы знаете, что такое датчик Холла, как он работает и зачем нужен. Надеемся, предоставленная информация была для полезной и интересной!

Применение датчиков Холла

В 1879 году, работая над своей докторской диссертацией в университете Джонса Хопкинса, американский физик Эдвин Герберт Холл проводил эксперимент с золотой пластинкой. Он пропускал по пластинке ток, разместив саму пластинку на стекле, причем дополнительно пластинка была подвергнута действию магнитного поля, направленного перпендикулярно ее плоскости, и, соответственно, перпендикулярно току.

Справедливости ради следует отметить, что Холл занимался в тот момент решением вопроса о том, зависит ли сопротивление катушки, по которой течет ток, от наличия рядом с ней постоянного магнита, и в рамках этой работы ученым были проведены тысячи опытов. В результате же эксперимента с золотой пластинкой было обнаружено возникновение некоторой разности потенциалов на боковых краях пластинки.

Это напряжение получило название напряжения Холла . Можно грубо описать процесс следующим образом: сила Лоренца приводит к накоплению отрицательного заряда возле одного края пластинки, и положительного — возле противоположного края. Отношение же возникающего напряжения Холла к величине продольного тока, является характеристикой материала, из которого изготовлен конкретный элемент Холла, и эта величина получила название «холловское сопротивление».

Эффект Холла служит достаточно верным методом определения типа носителей заряда (дырочный или электронный) в полупроводнике или металле.

На основе эффекта Холла теперь изготавливают датчики Холла , приборы для измерения напряженности магнитного поля и определения силы тока в проводнике. В отличие от трансформаторов тока, датчики Холла дают возможность измерять и постоянный ток. Таким образом, области применения датчика Холла в целом весьма обширны.

Так как напряжение Холла мало, вполне логично, что к выводам напряжения Холла подключают операционный усилитель. Для подключения к цифровым узлам, схему дополняют триггером Шмита, и получается пороговое устройство, которое срабатывает при заданном уровне напряженности магнитного поля. Такие схемы называют переключателями Холла.

Часто датчик Холла используется в паре с постоянным магнитом, и срабатывание происходит при приближении постоянного магнита к датчику на определенное, заданное заранее расстояние.

Довольно широко распространены датчики Холла в бесколлекторных, или вентильных, электродвигателях (сервомоторах), где датчики устанавливаются прямо на статоре двигателя и играют роль датчика положения ротора (ДПР), который обеспечивает обратную связь по положению ротора, примерно как коллектор в коллекторном двигателе постоянного тока.

Закрепив постоянный магнит на валу, получим простой счетчик оборотов, а иногда достаточно экранирующего воздействия самой ферромагнитной детали на магнитный поток от постоянного магнита. Магнитный поток, от которого обычно срабатывают датчики Холла, составляет 100-200 Гауссов.

Выпускаемые современной электронной промышленностью, трехвыводные датчики Холла имеют в своем корпусе n-p-n транзистор с открытым коллектором. Зачастую ток через транзистор такого датчика не должен превышать 20 мА, поэтому для подключения мощной нагрузки необходимо устанавливать усилитель тока.

Магнитное поле проводника с током, обычно, недостаточно интенсивное для срабатывания датчика Холла, поскольку чувствительность таких датчиков составляет 1-5 мВ/Гс, и поэтому для измерения слабых токов проводник с током навивают на тороидальный сердечник с зазором, а в зазор уже устанавливают датчик Холла. Так при зазоре в 1,5 мм магнитная индукция составит уже 6 Гс/А.

Для измерения токов более 25 А, проводник с током пропускают прямо через тороидальный сердечник. Материалом сердечника может служить альсифер или феррит, если измеряется ток высокой частоты.

На основе эффекта Холла работают некоторые ионные реактивные двигатели, и работают весьма эффективно.

На базе эффекта Холла работают электронные компасы в современных смартфонах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Датчик Холла — принцип работы

В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.

Содержание:

Датчик Холла, что это такое

Все автомобильные датчики классифицируются по параметру, который они определяют. Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.

Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.

Применение датчика в автомобиле

Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры. Схема датчика проста и мы ее помещаем ниже.

Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.

Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые приборы.

Преимущества автомобильного датчика Холла

Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:

  • компактность;
  • возможность разместить в любой точке двигателя или любого другого механизма;
  • стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
  • стабильность не только в работе, но и стабильность характеристики сигнала.

Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:

  1. Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
  2. Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
  3. Работоспособность датчика Холла сильно зависит от электронной схемы.
  4. Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.

Зажигание с датчиком Холла

Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.

Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.

Подключение и проверка датчика Холла

Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.

Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.

Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!

Датчики холла принцип работы применение

Мы предлагаем реверсивные мотор-редукторы, которые состоят из коллекторного электрического двигателя постоянного тока и редуктора. Сам двигатель состоит из якоря (ротора с якорной обмоткой), статора с постоянными магнитами и щёточного узла. Редуктор служит для уменьшения частоты вращения и соответствующего увеличения вращающего момента.

Блоки управления коллекторными двигателями

Блоки управления предназначены для управления работой коллекторных двигателей постоянного тока с напряжением питания до 24В. Блоки управляют скоростью, направлением и активным торможением мотор-редукторов постоянного тока, обеспечивают плавный пуск и остановку двигателя.

Источники питания

Стабилизированные источники питания постоянного тока — для питания приводов постоянного тока: коллекторных двигателей, шаговых приводов, бесколлекторных двигателей, а также для других устройств и приборов. Параметры предлагаемых источников питания:

Мотор-редукторы переменного тока

Мотор-редукторы производства DKM комплектуются цилиндрическими или червячным редуктором, могут поставляться с регулятором скорости, с тормозом и электромагнитной муфтой. Питание двигателей 220 В 50/60 Гц однофазное. Мощность 10. 180Вт.

Мотор-редукторы EMW — асинхронные трехфазные двигатели с червячным редуктором. Мощность 0,9. 3,0кВт

Частотные преобразователи — блоки управления асинхронными двигателями переменного тока

Частотные преобразователи используется для управления асинхронными двигателями переменного тока.
Преобразователи частоты Powtran серии PI8100а с векторным управлением применяются для управления трёхфазными мотор-редукторами EMW и асинхронными трёхфазными двигателями других марок.

Вентильные двигатели (бесколлекторные двигатели постоянного тока)

Мы предлагаем бесколлекторные (вентильные) двигатели постоянного тока с выходной мощностью до 660Вт. Все предлагаемые бесколлекторные двигатели с датчиками Холла, установленными под углом 120°.

Блоки управления вентильными двигателями

Блоки управления предназначены для работы с бесколлекторными двигателями постоянного тока с напряжением питания до 48В. Блоки управляют скоростью, направлением и активным торможением двигателей, обеспечивают плавный пуск и остановку двигателя. Предусмотрен аналоговый задатчик скорости — внешний сигналом (0. +5)В или встроенный потенциометр.

Интегральные датчики Холла — статья Георгия Волович

Описано применение датчиков Холла, примеры использования. Рассмотрен датчик тока на основе датчика Холла, датчик обратной связи по положению, расходомер. Приведены формулы и схемы.

Применение датчиков Холла

Ниже рассматриваются некоторые наиболее популярные применения интегральных датчиков Холла. Перечень возможных применений этих датчиков далеко не ограничивается примерами, предложенными вниманию читателя. Технические задачи, для решения которых наиболее часто используются эти датчики, описываются в книге «Hall Effect Sensing and Application Book» (Honeywell MICRO SWITCH Sensing and Control. 1999.)

Линейные датчики Холла:

  • датчики тока;
  • приводы переменной частоты вращения;
  • схемы управления и защиты электродвигателей;
  • датчики положения;
  • датчики расхода;
  • бесколлекторные двигатели постоянного тока;
  • бесконтактные потенциометры;
  • датчики угла поворота;
  • детекторы ферромагнитных тел;
  • датчики вибрации;
  • тахометры.
Читать еще:  Газовая резка металла; инструкция по обработке металла

Логические датчики Холла:

  • датчики частоты вращения;
  • устройства синхронизации;
  • датчики систем зажигания автомобилей;
  • датчики положения (обнаруживают перемещение менее 0,5 мм);
  • счётчики импульсов (принтеры, электроприводы);
  • датчики положения клапанов;
  • блокировка дверей;
  • бесколлекторные двигатели постоянного тока;
  • измерители расхода;
  • бесконтактные реле;
  • детекторы приближения;
  • считыватели магнитных карточек или ключей;
  • датчики бумаги (в принтерах).

Датчики тока

Линейные датчики Холла могут быть использованы в составе измерителей силы тока в пределах от 250 мА до тысяч ампер. Важнейшим достоинством таких датчиков является полное отсутствие электрической связи с измеряемой цепью. Линейные датчики позволяют измерять постоянные и переменные токи, в том числе токи довольно высокой частоты. Если линейный датчик Холла расположен вблизи проводника с током, то выходное напряжение датчика пропорционально индукции магнитного поля, окружающего проводник. Величина индукции, в свою очередь, пропорциональна току.

Рис.6 Конструкция датчиков тока

Рис.7 Позиционный привод с датчиком Холла в обратной связи по положению

В простейшем случае датчик тока представляет собой конструкцию, в которой датчик Холла устанавливается около провода, по которому течёт измеряемый ток (рис. 6а). Такие датчики используются для измерения больших токов, особенно в линиях электропередач. Индукция В определяется по формуле:

где r – расстояние от центра чувствительной области датчика до оси симметрии проводника в метрах. Чувствительность датчика тока может быть значительно увеличена путём использования концентратора магнитного потока в виде магнитопровода с прорезью, в которую помещается линейный датчик Холла (рис. 6б). В этом случае индукция магнитного потока через датчик:

Линейный датчик обратной связи по положению

Линейные датчики Холла могут быть использованы во многих видах позиционных приводов. Это иллюстрируется на рис. 7, где положение перемещаемой части, на которой закреплен магнит, устанавливается автоматически таким образом, чтобы разность между сигналом регулировки положения и сигналом датчика равнялась нулю. Бесколлекторные двигатели постоянного тока отличаются от обычных двигателей постоянного тока, имеющих коллекторно-щёточный узел, прежде всего тем, что коммутация секций якорной обмотки осуществляется электронной схемой, а не механическими скользящими контактами. Поэтому такие двигатели имеют гораздо большие надёжность и ресурс, требуют меньше обслуживания, почти не создают электромагнитных помех и могут использоваться при пониженном атмосферном давлении.

Рис.8 Датчики положения ротора бесколлекторного двигателя постоянного тока

Рисунок 8 показывает, как может быть получена информация о положении ротора для управления электронным коммутатором с помощью трёх датчиков Холла. Работа двигателя этого типа, представляющего собой по существу синхронный двигатель, основана на принципе самосинхронизации. Необходимую для работы датчиков Холла конфигурацию магнитного поля создают постоянные магниты, установленные на валу ротора. Датчики считывают угловую позицию вала и передают эту информацию схеме управления, которая обеспечивает своевременное отпирание и запирание силовых ключей электронного коммутатора обмоток статора. Подобные датчики положения ротора используются и в системах векторного управления двигателями переменного тока.

Рис.9 Датчик расхода

Существуют различные методы измерения расхода с использованием цифровых датчиков Холла, но принцип у них, как правило, общий: каждое изменение магнитного потока через датчик соответствует некоторой порции жидкости или газа, прошедшей через трубопровод. В примере, показанном на рис. 9, магнитное поле создаётся постоянными магнитами, установленными на лопастях рабочего колеса. Рабочее колесо вращается потоком воды. Датчик выдаёт два импульса за оборот колеса.

Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»

Датчики холла принцип работы применение

Мы предлагаем реверсивные мотор-редукторы, которые состоят из коллекторного электрического двигателя постоянного тока и редуктора. Сам двигатель состоит из якоря (ротора с якорной обмоткой), статора с постоянными магнитами и щёточного узла. Редуктор служит для уменьшения частоты вращения и соответствующего увеличения вращающего момента.

Блоки управления коллекторными двигателями

Блоки управления предназначены для управления работой коллекторных двигателей постоянного тока с напряжением питания до 24В. Блоки управляют скоростью, направлением и активным торможением мотор-редукторов постоянного тока, обеспечивают плавный пуск и остановку двигателя.

Источники питания

Стабилизированные источники питания постоянного тока — для питания приводов постоянного тока: коллекторных двигателей, шаговых приводов, бесколлекторных двигателей, а также для других устройств и приборов. Параметры предлагаемых источников питания:

Мотор-редукторы переменного тока

Мотор-редукторы производства DKM комплектуются цилиндрическими или червячным редуктором, могут поставляться с регулятором скорости, с тормозом и электромагнитной муфтой. Питание двигателей 220 В 50/60 Гц однофазное. Мощность 10. 180Вт.

Мотор-редукторы EMW — асинхронные трехфазные двигатели с червячным редуктором. Мощность 0,9. 3,0кВт

Частотные преобразователи — блоки управления асинхронными двигателями переменного тока

Частотные преобразователи используется для управления асинхронными двигателями переменного тока.
Преобразователи частоты Powtran серии PI8100а с векторным управлением применяются для управления трёхфазными мотор-редукторами EMW и асинхронными трёхфазными двигателями других марок.

Вентильные двигатели (бесколлекторные двигатели постоянного тока)

Мы предлагаем бесколлекторные (вентильные) двигатели постоянного тока с выходной мощностью до 660Вт. Все предлагаемые бесколлекторные двигатели с датчиками Холла, установленными под углом 120°.

Блоки управления вентильными двигателями

Блоки управления предназначены для работы с бесколлекторными двигателями постоянного тока с напряжением питания до 48В. Блоки управляют скоростью, направлением и активным торможением двигателей, обеспечивают плавный пуск и остановку двигателя. Предусмотрен аналоговый задатчик скорости — внешний сигналом (0. +5)В или встроенный потенциометр.

Интегральные датчики Холла — статья Георгия Волович

В статье описаны принципы построения и основные характеристики линейных и логических микросхем датчиков магнитного поля на эффекте Холла. Приведены параметры некоторых промышленных типов этих датчиков и примеры их применения.

Принцип действия датчика Холла

Рис.1 Иллюстация эффекта Холла

Интегральные датчики магнитного поля в своём большинстве используют эффект Холла, открытый американским физиком Эдвином Холлом (E. Hall) в 1879 г. Эффект Холла состоит в следующем. Если проводник с током помещён в магнитное поле, то возникает э.д.с., направленная перпендикулярно и току, и полю. Эффект Холла иллюстрируется на рис. 1. По тонкой пластине полупроводникового материала протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца. Эта сила искривляет траекторию движения электронов, что приводит к перераспределению объёмных зарядов в полупроводниковой пластине. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает э.д.с., называемая э.д.с. Холла. Эта э.д.с. пропорциональна векторному произведению индукции B на плотность тока j:

Рис.2 Расположение двух элементов Холла на ИМС, компенсирующее ошибку, вызванную механической деформацией кристалла

где d – ширина пластины, q – заряд частицы-носителя, n – концентрация носителей. При снижении концентрации носителей э.д.с. Холла возрастает, поэтому в качестве материала для датчиков Холла предпочтительно использование таких полупроводников, как кремний, арсенид галлия и др. Для прямоугольной пластины с однородными током и магнитным полем, направленными, как показано на рис. 1, эта э.д.с. равна

где kн – постоянная Холла, VS – напряжение, создаваемое на токоподводящих выводах датчика Холла. Для кремния kн составляет величину по рядка 70 мВ/(В•Тл), поэтому, как правило, э.д.с. датчика Холла требуется усиливать. Кремний обладает тензорезистивным эффектом, заключающимся в изменении сопротивления при механических напряжениях. Желательно уменьшить это влияние в датчике Холла. Это достигается соответствующей ориентацией элемента Холла на интегральной схеме и использованием нескольких элементов на кристалле. На рис. 2 показаны два элемента Холла, расположенные рядом на кристалле ИМС. Они позиционированы так, что испытывают практически одинаковое механическое напряжение, вызывающее изменение R. К элементу, который на рисунке изображён слева, приложено напряжение возбуждения VS, направленное по вертикальной оси, а к изображённому справа – по горизонтальной. При сложении сигналов этих двух датчиков ошибка, вызванная деформацией кристалла, компенсируется.

Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»

ЧТО ТАКОЕ ДАТЧИК ХОЛЛА

Сегодня роль электроники в автомобилестроении трудно переоценить. Автоматика оперативно контролирует и управляет всеми агрегатами современного автомобиля, обеспечивая их максимальную эффективность при высокой надёжности.

Но это возможно только при наличии достаточного количества датчиков, сообщающих электронному блоку управления множество различных параметров для выработки управляющих сигналов.

Одно из таких устройств в современном двигателе – датчик Холла. Принцип его функционирования основан на эффекте отклонения электронов в проводнике под воздействием силы Лоренса, возникающей при взаимодействии магнитного поля с движущимися заряженными частицами.

Если через две стороны плоского прямоугольного проводника помещённого плоскостью перпендикулярно силовым магнитным линиям пропускать электрический ток, то в результате их взаимодействия с электронами на двух других сторонах прямоугольника появляется электрический потенциал.

Причём сторона, куда отклоняются электроны, зависит от направления силовых магнитных линий. В результате этого эффекта создаётся плюсовой и минусовой полюс выходного потенциала.

Величина его небольшая – до 100 милливольт, и зависит от силы протекающего тока и напряжённости поля. Но этого вполне достаточно для того, чтоб электронная схема смогла его зарегистрировать.

Добавление к чувствительному элементу полупроводниковой схемы позволило создать компактный прибор, свободный от недостатков контактного прерывателя, создающего так называемый «дребезг» во время замыкания или размыкания. Благодаря сравнительно низкой цене при небольших размерах датчики Холла применяются весьма широко.

Например, для бесконтактного измерения тока, индикации или измерения уровня магнитного поля, а также в ноутбуках либо телефонах-раскладушках для отключения питания при закрывании крышки.

В автомобилестроении датчики Холла используются преимущественно для определения положения коленчатого вала, при котором следует подавать высоковольтный импульс создающий разряд на свече зажигания.

РАЗНОВИДНОСТИ ДАТЧИКОВ ХОЛЛА

По типу исполнения датчики бывают:

  • аналоговыми;
  • дискретными.

Первый тип просто генерирует двухполярный потенциал, пропорциональный напряженности и направлению магнитного поля, либо однополярный, показывая лишь его абсолютное значение. Подобные аналоговые приборы используют как измерительные.

Дискретные (цифровые) датчики разделяются на однополярные, включающиеся или выключающиеся при наличии либо отсутствии магнитного поля, и биполярные, реагирующие включением на один полюс, и выключением на другой полюс магнита.

Как правило, автомобильный датчик Холла состоит из постоянного магнита, находящегося на определённом расстоянии от чувствительного элемента, и микросхемы, усиливающей сигнал с него. Ротор из ферромагнетика (сталь, железо), своими лопастями периодически перекрывают магнитное поле между магнитом и чувствительным элементом.

Если поле не перекрыто ротором, микросхема генерирует сигнал единицы, близкий по напряжению к питающему уровню бортовой сети. Когда лопасть ротора перекрывает магнитное поле, сигнал на выходе микросхемы близок к нулю.

В системах зажигания, используются цифровые датчики с высокой стабильностью включения, непосредственно коммутирующие напряжение питания. По сравнению с обыкновенными контактными прерывателями датчики Холла характеризуются повышенной чувствительностью к электромагнитным помехам, что устраняется помещением их в магнитный экран из магнитомягкого материала (пермаллоя).

Электронная схема также несколько снижает его надёжность. Но всё это окупается высочайшей стабильностью срабатывания, а значит момента зажигания и возможностью качественной его регулировки.

КАК БЫСТРО ПРОВЕРИТЬ ДАТЧИК ХОЛЛА

Иногда в процессе эксплуатации возникают неисправности, требующие проверки работоспособности датчика Холла. Вот типовые признаки подобных дефектов:

  • мотор плохо запускается, вообще не заводится или самопроизвольно глохнет;
  • обороты коленчатого вала нестабильны, заметны рывки при работе.

Способов проверки существует несколько:

1. Простейший – заменить на заведомо исправный прибор. Не слишком эон дорог, чтобы было накладно всегда при себе иметь запасной.

2. Мультиметром в режиме вольтметра. Датчик при этом должен быть стандартно подключен к массе (клемма «-» аккумулятора) и клемме «+» аккумулятора. Для проверки подключают щупы вольтметра к общему проводу и сигнальному контакту датчика.

Перекрывая зазор датчика куском железной или стальной пластины, например, лезвием ножа наблюдаем за показаниями вольтметра. При отсутствии пластины напряжение должно быть равно примерно 0,4 В, при наличии – 11 В.

Более сложные способы проверки для любителей не подходят , посему они здесь не приводятся, а для специалистов подобные описания излишни.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Датчик Холла принцип работы

Датчик Холла своим появлением обязан американскому учёному-физику Эдвину Холлу, который в 1879 году совершил важное открытие гальваномагнитного явления. Практическая ценность эффекта Холла такова, что датчик, изготовленный на его основе, применяется в самых разных приборах и поныне. Сложное на первый взгляд устройство датчика не является таковым, если детально в нём разобраться. Итак, как же работает датчик Холла?

Датчик Холла: на самом деле – всё просто

Прибор основан на эффекте Холла, который заключается в следующем: если на любой полупроводник, вдоль которого протекает электрический ток, оказать воздействие пересекающим поперёк магнитным полем, то возникнет поле электрическое, называемое электродвижущей силой (ЭДС) Холла. При этом показатель напряжения изменится на величину от 0,4 В до 3 В.

Таким образом, датчик Холла имеет не слишком сложный для понимания принцип работы. Для большей ясности стоит привести наглядный пример. Для создания эффекта Холла понадобятся тонкая пластинка-полупроводник, источник электрического тока, постоянный магнит, провода. Ток пропускается между двумя сторонами пластинки, параллельными друг другу. К двум другим сторонам крепятся провода. Одновременно с этим к полупроводнику подносится постоянный магнит. Это и есть генератор Холла.

Можно сделать его импульсным. Для этого достаточно разместить между пластинкой и магнитом движущийся экран с щелями в нём. Такая щелевая конструкция и принцип работы характерны для всех датчиков Холла.

Читать еще:  Крепление на стену для велосипеда

От теории – к практике. Датчик холла: принцип работы и назначение современных генераторов

Практическое применение ЭДС Холла началось далеко не сразу после её открытия, так как полупроводники с нужными свойствами научились изготавливать промышленным способом лишь через несколько десятков лет.

Первые приборы получались довольно громоздкими и не очень эргономичными. Новую жизнь в судьбу датчика Холла привнесло развитие микроэлектроники, когда были придуманы микросхемы. Их стали активно использовать в генераторах Холла. Благодаря этому был налажен выпуск миниатюрных датчиков, которые могут быть линейными (датчики тока, вибрации, положения, расхода и т.п.) и логическими (датчики приближения, частоты вращения, импульсов и т.д.), цифровыми и аналоговыми.

С помощью датчика Холла стали успешно измерять ток, мощность, скорость, расстояние. Даже в CD-приводе любого персонального компьютера используется ЭДС Холла. Но наибольшее применение генератор Холла получил в автомобильной промышленности – для измерения положения распределительного и коленчатого валов, в качестве бесконтактного электронного зажигания и в других целях. Датчик Холла полезен тем, что он считывает и предоставляет электронному блоку управления информацию, нужную для нормальной работы автомобиля.

Несомненные преимущества датчика Холла – его дешевизна, неприхотливость, долговечность и бесконтактность. Надёжность прибора обусловлена тем, что в нём отсутствуют физически взаимодействующие (трущиеся друг о друга) детали.

Датчик Холла

Официальное название — датчик положения на эффекте Холла.
Это датчик, работающий на эффекте Холла, суть которого заключается в том, что при при помещении в магнитное поле некоторого проводника с постоянным током, в этом проводнике возникает поперечная разность потенциалов. Также называет холловским напряжением.

Датчик Холла весьма широко распространен в автомобилестроении, с его помощью измеряют угол положения распредвала, на некоторых автомобилях — угол положения коленвала, на более старых автомобилях он сигнализировал о моменте искрообразования.

Эффект Холла заключается в том, что при пропускании тока через клеммы «а» полупроводниковой пластины, помещенной в поле магнита, на боковых клеммах «б» появляется напряжение.

Еще в 1879 году американский физик Э. Холл, работавший в балтиморском университете, открыл интересное явление, суть которого состояла в следующем. Если в магнитное поле поместить прямоугольную полупроводниковую пластину и к узким ее граням подвести электрический ток, то на широких, гранях пластины возникнет напряжение, величина которого может быть от десятков микровольт до сотен милливольт. Однако техническое применение этого эффекта вынужденно задержалось почти на 75 лет, до той поры, когда началось промышленное производство полупроводниковых пленок с нужными свойствами.

Устройство датчика Холла:
1 — постоянный магнит;
2 — лопасть ротора;
3 — магнитопроводы;
4 — пластмассовый корпус;
5 — микросхема;
6 — выводы.

Еще позже, при развитии микроэлектроники, удалось сделать миниатюрный датчик, содержащий все необходимое — постоянный магнит и микросхему с чувствительным элементом. Такое устройство обладает рядом неоспоримых достоинств.
Во-первых — малые размеры.
Во-вторых, и это особенно важно, изменение частоты срабатывания (иными словами — оборотов двигателя) не вызывает смещения момента измерения.
В-третьих, электрический сигнал от датчика имеет, по терминологии специалистов, прямоугольную форму: при включении он сразу набирает определенную и постоянную величину, а не носит характер всплесков. Для управления электроникой это немалый плюс.
Есть у датчика и другие достоинства, но упомянем о недостатках. Главный из них тот, что присущ всякой электронной схеме: датчик чувствителен к электромагнитным помехам, возникающим в цепи питания (о мерах предосторожности, диктуемых этим обстоятельством, скажем ниже). Кроме того, датчик Холла дороже магнитоэлектрического и теоретически менее надежен, поскольку содержит электронную схему, однако крупномасштабное производство и развитие технологии сводят эти факторы к минимуму.
Работает датчик Холла следующим образом. Когда через зазор проходит металлическая лопасть ротора, магнитный поток шунтируется и индукция на микросхеме равна нулю. При этом сигнал на выходе из датчика относительно «массы» имеет высокий уровень, то есть почти равен напряжению питания.

Так можно проверить работоспособность датчика Холла:
1 — датчик;
2 — разъем;
3 — резистор МЛТ-0,25 1,5 кОм;
4 — светодиод или вольтметр (тестер);
5 — батарейка 9 В.

Проверять датчик лучше всего осциллографом. Но с известной осторожностью можно и более простым оборудованием, прямо на машине.
Первое что нужно сделать — отсоединить разъем кабеля, подходящего к датчику. Важнейшее условие, которое следует свято соблюдать: зажигание при этом должно быть выключено! Несоблюдение этого условия — одна из основных причин выхода из строя датчиков Холла в эксплуатации. Теперь соберите простую схему, показанную на рисунке. При прохождении магнита мимо датчика светодиод должен попеременно загораться и гаснуть, указывая на наличие сигнала.
Еще одно важное замечание: ни в коем случае не проверяйте датчик контрольной лампой! Именно так погублено множество приборов.

Датчики Холла. Виды и применения. Работа и подключения

Речь пойдет о датчике тока, принцип действия которого основан на эффекте Холла (Датчики Холла). Что это за эффект, и как такой датчик можно сделать в домашних условиях? Чтобы лучше понять эффект Холла нужно разобрать эксперимент физика, в честь которого был назван этот эффект.

  • Цифровые датчики . Работают на определение магнитного поля. Если индукция доходит до определенного предела, то датчик дает сигнал на присутствие магнитного поля. Если предел не достигнут, то сигнал равен нулю. Слабая индукция и малая чувствительность датчика не дает сигнал наличия поля. Недостатком такого типа датчика является то, что у него есть зона нечувствительности порогов.

Цифровые датчики Холла делятся на униполярные и биполярные:

— Униполярные датчики Холла работают, если есть поле какой-либо полярности, выключаются при уменьшении индукции.
— Биполярные датчики Холла срабатывают на изменение полярности поля. При одной полярности датчик включается, а при другой – выключается.

  • Аналоговый вид датчиков Холла изменяет индукцию поля в разность потенциалов. Значение датчика зависит от полярности и его силы. Нужно учитывать, на каком расстоянии находится датчик.
Применение

Датчики Холла входят в состав многих приборов. Чаще они применяются в измерении напряженности поля магнитной индукции, в электродвигателях, в ионных двигателях ракет. Широкое распространение датчики Холла нашли в устройстве системы зажигания современных автомобилей.

Также они используются в бесконтактных выключателях, герконах, при измерении силы тока, уровня жидкости и других местах. Главное их преимущество – это воздействие без физического контакта.

Как проверить на автомобиле исправность датчика Холла

В быту с такой проблемой сталкиваются чаще всего автомобилисты. Наиболее простым способом является обыкновенная замена на исправный датчик. Если после замены система зажигания заработала, значит необходимо менять датчик.

Если нечем заменить проверяемый датчик, то собирают простое устройство, которое может имитировать работу датчика Холла. Берется кусок провода, и тройной разъем от распределителя зажигания. Эти предметы работают аналогично датчику.

Для контроля пользуются обычным мультиметром. Если датчик вышел из строя, то тестер покажет 0,4 вольта или меньше. Также проверяется работа датчика путем проверки искры при подключении зажигания. Перед этим соединяют концы провода к выходам коммутатора.

Если неисправность возникла не на автомобиле, а на другом оборудовании, то необходим тестер. Методика проверки будет зависеть от прибора, в котором установлен датчик.

Датчики Холла в смартфонах

Мобильные гаджеты имеют в составе много функциональных блоков. Среди них есть вспомогательные датчики, одним из которых является датчик Холла. В современных устройствах связи такие датчики являются измерительными элементами, с помощью которых определяют мощность магнитного поля, его изменения. Они называются в честь ученого Холла.

Для чего установлен датчик Холла в смартфоне

Этот сенсорный элемент имеет много возможностей. Одной из них является измерение магнитной индукции приборов, а также бесконтактное управление. В дорогих моделях смартфонов имеется магнитометр, работа которого основана на датчике Холла.

На многих мобильниках этот датчик не полностью реализован. В основном этот сенсор применяют для таких задач:
  • Цифровой компас. Применяется для программ навигации и повышения скорости позиционирования.
  • Оптимизация взаимодействия устройства с разными аксессуарами, магнитными чехлами.
  • Применение датчика в раскладных моделях телефонов, для включения и отключения экрана при движении крышки.

Пример работы магнитного датчика Холла в чехле и смартфона заключается в том, что при открывании и закрытии чехла автоматически происходит блокировка экрана. Датчик реагирует на движение магнита, на усиление магнитного поля.

Принцип действия

Понадобится пластина и элемент питания постоянного тока. Подключаем пластину к батарее. От плюса к минусу начинает протекать электрический ток, вызванный движением заряженных частиц. Из курса физики эти частицы, или по-другому электроны летят против движения тока. Теперь поднесем два магнита к пластине разными полюсами так, чтобы линии индукции проходили через ее сечение.

Возникает так называемая сила Лоренца, которая отклоняет летящие по пластине электроны в сторону. Из-за этого возникает разность потенциалов на краях пластины. Эта разность потенциалов, иначе говоря, напряжение будут меняться в зависимости от силы тока и магнитного поля. Такой эффект носит название человека, который его обнаружил в 1879 году. Им был Эдвин Холл.

На основе этого эффекта выпускается большое количество датчиков, позволяющих без физического разрыва провода измерять в нем как постоянный, так и переменный ток, поскольку при протекании тока в проводнике создается электромагнитное поле.

Оно подобно тем магнитам, подносимым к пластине, изменяет выходное напряжение датчика Холла.

Но возникает проблема того, что это поле при протекании не сильно больших токов само по себе очень мало. Для того, чтобы его увеличить, будем использовать ферритовое кольцо, которое имеет особые магнитные свойства и позволит увеличить необходимое нам электромагнитное поле до уровня для обнаружения протекания тока в проводнике.

Сборка датчика тока на основе эффекта Холла

Попробуем сделать собственный датчик тока. Понадобится ферритовое кольцо и датчик Холла. Найти ферритовое кольцо не составляет особых проблем. Они есть в блоках питания компьютера или энергосберегающих ламп, а также продаются в радиомагазинах по цене от 10 до 100 рублей в зависимости от размера самого кольца. В нашем случае имеется кольцо диаметром 28 мм за 55 рублей.

Подойдут кольца различных диаметров вплоть до 10 мм. Чем больше кольцо, тем чувствительнее получится датчик тока. Что касается датчика Холла, то его можно заказать со всем известного сайта. Стоит он недорого. Либо можно найти в нерабочих вентиляторах, ноутбуках и прочих устройствах, где он может использоваться. Датчики Холла Аналоговые и цифровые (Дискретные).

Дискретные работают по принципу транзисторов, то есть, при превышении какого-либо уровня магнитного поля датчик срабатывает. Аналоговый вид меняет свое выходное напряжение в зависимости от величины проходящего через него магнитного поля. Нам понадобится аналоговый датчик Холла. Если вы хотите не только детектировать протекание тока по проводнику, но также знать приблизительную величину этого тока. В нашем случае это аналоговый датчик ОН49Е.

Схема подключения датчика

Схема подключения выглядит следующим образом.

Как видно из рисунка для детектирования магнитного поля, создаваемого током в проводнике, нам необходимо будет сделать зазор в ферритовом кольце и поместить туда датчик Холла. Тем самым появится возможность измерять величину этого электромагнитного поля. На основании полученных данных можно делать вывод о том, есть ли сейчас ток в проводнике, и какой он величины.

Чтобы получить более универсальный вариант этого датчика, мы распилили ферритовое кольцо пополам, что без тисков было сделать сложно. Это привело к поломке кольца. Как хорошо, что люди придумали клей, и это дело мы быстро исправили. Получив две половинки, мы убрали неровности наждачной бумагой. Затем на одну из сторон мы вырезали и приклеили плотный лист бумаги. На другую сторону сам датчик Холла. После этого мы приклеили обе половинки к большому крокодилу на 30 ампер.

В итоге получились токовые клещи, или более универсальный вариант датчика тока, который можно снять и присоединить к любому проводу без его разреза. Такие разделяемые датчики тока стоят около 1500 рублей, при заказе в Китае. Экономия получилась налицо.

Промышленное напряжение в сети переменного тока изменяется с частотой 50 герц. То есть, направление тока, текущего по проводнику, будет меняться 50 раз в секунду. Электромагнитное поле также вслед за током будет менять свое направление 50 раз в секунду.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector