Bktp-omsk.ru

Делаем сами
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Датчик вибрации своими руками

ДАТЧИК ВИБРАЦИИ ДЛЯ ОХРАННОГО УСТРОЙСТВА

Основой датчика служит пьезоэлемент от звукоизлучателя ЗП-2, ЗП-4 или ЗП-5. Общий вид датчика (сбоку) показан на рис.1,а. Пьезоэлемент 2 одной из обкладок припаян к фолымрованной площадке печатной платы 1. К верхней по рисунку обкладке пьезоэлемента 2 припаивают стойку 4, согнутую в виде буквы Л из упругой стальной проволоки диаметром 0,5 мм. Вид на стойку 4 по стрелке А показан на рис. 1,6. Лапы и седловину стойки нужно заранее облудить.

Консоль 3 выгибают из такой же проволоки и надежно укрепляют на одном из ее концов груз 5 массой 10. 15 г из свинца или припоя. После этого консоль припаивают одним концом к плате, а примерно серединой — к седловине стойки 4.

Во избежание отрыва верхней обкладки от пьезоэлемента перед припайкой консоли ее слегка изгибают так, чтобы после установки на место она создавала на пьезоэлементе избыточное прижимающее упругое усилие. Размеры деталей датчика непринципиальны, поэтому на рис.1 не даны. Паять необходимо легкоплавким припоем.

Выводами датчика служат фольговая площадка, к которой припаян пьезоэлемент, и впаянное в плату основание консоли. Плату укрепляют на поверхности,

вибрацию которой надлежит контролировать. При механическом колебании этой поверхности на выводах датчика возникает несколько слабых импульсов длительностью З. 15 мс.

Для того чтобы усилить эти импульсы и придать им форму, необходимую для дальнейшей обработки, сигнал с датчика подают на вход усилителя-формирователя (см. схему на рис.2). Операционный уси

литель DA1 работает в режиме максимального усиления, а транзистор VT1 — в режиме переключения. Диод VD1 увеличивает своим напряжением отсечки зону нечувствительности транзистора.

ОУ вместе с диодом и транзистором образуют компаратор напряжения, отличающийся малым энергопотреблением. Порог срабатывания компаратора устанавливают подстроечным резистором R2. Если амплитуда отрицательной полуволны сигнала датчика менее напряжения на резисторе R2, транзистор VT1 остается закрытым, а выходное напряжениеравным нулю.

Механическое возбуждение датчика приводит к появлению на выходе формирователя нескольких прямоугольных импульсов длительностью 3. 15 мс, по амплитуде пригодных для прямого введения их в цифровой анализатор, выполненный на микросхемах КМОП. Простейшее подобное устройство, способное выделить полезный сигнал на фоне ложных срабатываний, представляет собой счетчик(001 на рис.2), периодически обнуляемый по входу R импульсами электронных часов или специального генератора. Сигнал тревоги — напряжение высокого уровня — появится на выходе лишь тогда, когда число импульсов на входе счетчика в интервале между двумя соседними обнуляющими импульсами достигнет некоторого числа, устанавливаемого переключателем SA1 (на рис.2 оно установлено равным восьми).

Если не задаваться решением задачи исключения ложных сигналов, то сигнал с коллектора транзистора VT1 можно подавать непосредственно на вход узла формирования сигнала тревоги.

Как показывает опыт, датчик практически не реагирует на акустические сигналы, распространяющиеся в воздушной среде. Чувствительный прежде всего к нормальной составляющей вибраций, он довольно хорошо воспринимает и возмущения, лежащие в плоскости пьезоэле-мента,-очевидно вследствие возникновения реакции в точках крепления стойки. Таким образом, датчик реагирует на вибрации произвольной ориентации. Ток, потребляемый усилителем-формирователем в режиме ожидания при напряжении питания 9 В, не превышает -18 мкА, при 5 В — 10 мкА.

Источник: РАДИО 12/94
Автор: Ю.ВИНОГРАДОВ, г.Москва

C этой схемой также часто просматривают:

ЗАЖИГАЛКА ДЛЯ ГАЗА
Зарядное устройство для автомобильных и мотоциклетных батарей
Зарядное устройство для автомобильных аккумуляторов
Имитатор для проверки телефонных аппаратов
Простые датчики для охранной сигнализации
СТОРОЖЕВОЕ УСТРОЙСТВО С ТЕЛЕФОННЫМ ВЫЗОВОМ
ЗВУКОВОЕ СОПРОВОЖДЕНИЕ — БЕЗ ПРОВОДОВ
УЛЬТРАЗВУКОВОЕ ОХРАННОЕ УСТРОЙСТВО
УСТРОЙСТВО ДЛЯ ПРОСЛУШИВАНИЯ МАГНИТНЫХ ФОНОГРАММ

Как правильно выбрать акселерометр и датчик ускорения

Нужен акселерометр? Столкнувшись с разнообразием технологий, формы, размера, диапазона измерений, нововведений даже самые опытные инженеры могут столкнуться с проблемой выбора правильной модели. Надеемся, что данная статья поможет быстрее сориентироваться в широкой номенклатуре акселерометров.

Принцип измерений

Первый шаг к правильному выбору акселерометра – это определение наиболее подходящего параметра измерений. Сегодня используются три технологии построения акселерометра:
— пьезоэлектрические акселерометры – самый распространенный на сегодняшний день вид акселерометров, которые широко используются для решения задач тестирования и измерений. Такие акселерометры имеют очень широкий частотный диапазон (от нескольких Гц до 30 кГц) и диапазон чувствительности, а также выпускаются в различных размерах и формах. Выходной сигнал пьезоэлектрических акселерометров может быть зарядовым (Кл) или по напряжению. Датчики могут использоваться для измерений как удара, так и вибрации.
— пьезорезистивные акселерометры обычно имеют малый диапазон чувствительности, поэтому они больше подходят для детектирования ударов, чем определения вибрации. Еще одна область их применения – испытания на безопасность при столкновении. В большинстве своем пьезорезистивные акселерометры отличаются широким диапазоном частот (от нескольких сотен Гц до 130 кГц и более), при этом частотная характеристика может доходить до 0 Гц (т.н. DC датчики) или оставаться неизменной, что позволяет измерять сигналы большой продолжительности.
— акселерометры на переменных конденсаторах относятся к компонентам новейших технологий. Как и пьезорезистивные акселерометры, они имеют DC ответ. Такие акселерометры отличаются высокой чувствительностью, узкой полосой пропускания (от 15 до 3000 Гц) и отличной температурной стабильностью. Погрешность чувствительности в полном температурной диапазоне до 180°C не превышает 1.5 %. Акселерометры на переменных конденсаторах используются для измерений низкочастотной вибрации, движения и фиксированного ускорения.

Измеряемые параметры

Схематично, параметры, измеряемые акселерометрами, можно сгруппировать в следующие классы:

  • измерение вибрации: объект вибрирует, если он производит колебательные движения относительно положения равновесия. Вибрацию измеряют в транспортной и аэрокосмической промышленности, а также на промышленном производстве.
  • измерение ударных ускорений: внезапное возбуждение структуры, создающее резонанс. Ударный импульс может создаваться взрывом, ударом молотка по предмету или в результате столкновения с другим объектом.
  • измерение движения: медленное перемещение со скоростью от доли секунды до нескольких минут, например, перемещение руки робота или подвеска автомобиля.
  • сейсмоисследования: измерения малых перемещений и низкочастотной вибрации. Такие измерения требуют специализированных малощумящих акселерометров с высокой разрешающей способностью. Акселерометры для сейсмоисследований контролируют движения мостов, полов, а также определяют землетрясения.

Общие понятия

Перед обсуждением технологии и особенностей применения, необходимо сделать несколько общих замечаний.
Частотная характеристика – это зависимость электрического выходного сигнала акселерометра от внешнего механического воздействия в частотном диапазоне с фиксированной амплитудой. Это один из основных параметров, от которого зависит выбор того или иного компонента. Диапазон частот обычно определяется серией экспериментов и указывается в спецификации. Обычно этот параметр указывается с точностью ±5% от опорной частоты (обычно 100 Гц).

Многие компоненты специфицированы на ±1 дБ или ±3 дБ. Эти значения указывают на точность акселерометра в заданном частотном диапазоне. Многие data sheet содержат графики типичной АЧХ, которые иллюстрируют флуктуацию точности компонента в различных частотных диапазонах.

Другой важный параметр акселерометра – число осей измерения. Сегодня выпускаются компоненты с одной и тремя измерительными осями. Еще одна возможность построения сложной системы – это организация трех акселерометров в один измерительный блок.

Вибрация

Лучший выбор для измерения вибрации – это пьезоэлектрические акселерометры, благодаря их широкой частотной характеристике, хорошей чувствительности и высокой разрешающей способности. В зависимости от типа выходного сигнала они могут быть с зарядовым выходом и с выходом по напряжению (IEPE).

В последнее время широко используются акселерометры с вольтовым выходным сигналом, поскольку они удобны в применении. Несмотря на разнообразие торговых марок и модификаций, все производители компонентов этой группы придерживаются единого псевдо-стандарта, поэтому легко заменяемы между собой. Обычно такие акселерометры имеют в своей структуре усилитель заряда, поэтому не требуют дополнительных внешних компонентов. Всё, что нужно для подключения акселерометра, — это источник постоянного тока. Таким образом, для измерения вибраций в известном диапазоне и в пределах температурной нормы -55…125°C (до 175°C для высокотемпературных моделей) рекомендуется использовать пьезоэлектрические акселерометры с выходным сигналом по напряжению.

Преимущества акселерометров с зарядовым выходом проявляются в возможности работы при высоких температурах и в широком диапазоне амплитуды, который определяется настройками усилителя заряда (заметим, что акселерометры по напряжению имеют фиксированный диапазон амплитуды). Типичный рабочий диапазон температур составляет -55…288°C, а специализированные компоненты могут работать в диапазоне -269…760°C.

Однако в отличие от IEPE акселерометров, емкостные датчики требуют применения специальных малошумящих кабелей, цена которых значительно превышает цену на стандартные коаксиальные кабели. Для подключения датчиков также потребуются усилители заряда и линейные конвертеры. Подводя итоги, можно придти к заключению, что емкостные акселерометры предпочтительны для высокотемпературных измерений неизвестных заранее ускорений.

В приложениях, где требуется измерять вибрацию очень малой частоты, рекомендуется использовать акселерометры на переменных конденсаторах (VC). Их частотная характеристика составляет от 0 Гц до 1 кГц, в зависимости от требуемой чувствительности. При проведении измерений низкочастотной вибрации VC акселерометр с частотной характеристикой 0-15 Гц будет иметь чувствительность 1 В/г. Такие датчики незаменимы в электрогидравлических шейкерах, в автомобилестроении, в тестовых испытаниях машин и конструкций, в системах подвески, железнодорожном транспорте.

Ударные ускорения

Для измерений ударных ускорений используются две технологии, модельный ряд представлен компонентами на различный уровень силы удара и с различными выходными характеристиками. Выбор акселерометра для ударных ускорений, в первую очередь, зависит от ожидаемого уровня ударного ускорения.

  • Низкий уровень 5000 г, датчик на расстоянии менее 1 метра от точки удара

Для измерения малых ударных ускорений можно использовать акселерометры общего применения. Акселерометр должен иметь линейный диапазон до 500 г и ударопрочность 500 г. Обычно для этого используются датчики с выходным сигналом по напряжению, поскольку они не чувствительны к кабельным вибрациям. Для аттенюации резонанса рекомендуется использовать усилитель с фильтром нижних частот.

Для тестовых испытаний машин на безопасность используются пьезорезистивные акселерометры. Для измерений ударов в дальней зоне применяются специализированные акселерометры со встроенным фильтром и сдвиговой модой. Электронный фильтр уменьшает собственную резонансную частоту акселерометра для предотвращения перегрузки оборудования.

Акселерометры для измерений в ближней зоне имеют рабочий диапазон до 20,000 г. Здесь выбор зависит от специфики проводимого теста, поэтому используются как пьезоэлектрические, так и пьезорезистивные датчики. Обычно такие приборы имеют встроенный механический фильтр.

Также как и при измерении вибрации, частотная характеристика является важнейшим параметром датчиков ударного ускорения. Желательно, чтобы такие датчики имеют широкий диапазон частот (около 10 кГц).

Измерение движения, фиксированного ускорения и низкочастотной вибрации

Для таких целей наиболее подходящим выбором станут акселерометры с переменной емкостью. Они позволяют измерять медленные изменения ускорения и низкочастотную вибрацию, при этом уровень их выходного сигнала достаточно высок. Также, такие датчики обеспечивают высокую стабильность в широком диапазоне рабочих температур.
При установке VC акселерометра в положение, когда его ось чувствительности параллельна оси земного притяжения, выходной сигнал датчика будет равен усилию в 1 г. Такая закономерность известна как DC отклик. Благодаря такой особенности, акселерометры на переменных конденсаторах часто используются для измерений центробежной силы или ускорений и замедлений подъемных устройств.

Условия эксплуатации

После выбора акселерометра соответствующей технологии и отвечающего требованиям целевого применения необходимо рассмотреть ряд следующих факторов. В первую очередь, это условия окружающей среды, где датчик будет использоваться. Сюда относятся рабочая температура, максимальный уровень ускорения и влажность.

ТехнологияТемпературный диапазон
Пьезоэлектрические общего применения-55…260°C
Пьезоэлектрические высокотемпературные-55…650°C
Пьезоэлектрические низкотемпературные-184…177°C
С выходом по напряжению общего применения-55…125°C
С выходом по напряжению высокотемпературные-55…175°C
Пьезорезистивные-55…66°C

Диапазон измерений акселерометра указывается в спецификации дважды, что может спутать инженера по применению. Действительный диапазон указывается в динамических характеристиках. Например, IEPE акселерометр может иметь диапазон 500 g, но при определенных условиях среды может выдерживать удар до 1000 g и 2000 g. 500 g – это максимальный диапазон линейной работы акселерометра. Параметры, указанные для определенных условий эксплуатации, показывают максимально допустимый уровень удара.

В случае с акселерометрами зарядового типа, динамические характеристики не содержат рабочего диапазона, поскольку он во многом зависит от усилителя заряда. Здесь лучше обратиться к линейности амплитудной характеристики, которая указывается в разделе динамических параметров. Также как и в предыдущем случае, максимальный диапазон измерений, указанный при определенных условиях эксплуатации, свидетельствует о предельной нагрузочной способности акселерометра.

О возможностях работы датчиков во влажной среде свидетельствуют различные указатели на герметичность исполнения корпуса. Следует заметить, что непрерывное изменение температурных условий может нарушить эпоксидную изоляцию корпуса датчика.

Поскольку современные технологии производства акселерометров используют немагнитные материалы, магнитная чувствительность редко указывается в спецификации на компоненты. Если датчик предназначен для установки на гибкие поверхности, на ведущее место выходят параметры изгиба основания. Сгиб поверхности приводит к изгибу основания акселерометра, что может привести к ошибочному срабатыванию датчика в результате вибрации. Поэтому следует избегать применения компрессионных акселерометров на гибких поверхностях.

Вес акселерометра

При соприкосновении акселерометра и объекта измеряемое ускорение изменится. Этого эффекта можно избежать, если не забывать про вес самого датчика. В качестве эмпирического правила можно принять то, что вес акселерометра должен превышать вес предмета не более чем на 10%.

Чувствительность и разрешение

Когда необходимы датчики с малым выходным сигналом или широким динамическим диапазоном, следует обратиться к параметрам разрешения и чувствительности.

Акселерометр преобразовывает механическую энергию в электрический выходной сигнал. Такой сигнал может выражаться в мВ/г или в пКл/г (для датчиков с зарядовым выходом). Обычно линейка акселерометров содержит несколько моделей с различной чувствительностью, оптимальное значение которой зависит от уровня измеряемого сигнала. Например, для измерений сильных ударных колебаний требуются датчики с низкой чувствительностью.

Для приложений, требующих измерений малых ускорений, лучшим решением будет использование акселерометра с высокой чувствительностью, где выходной сигнал будет выше уровня шума усилителя. Например, если ожидается уровень вибрации 0.1g, а чувствительность датчика составляет 10 мВ/g, напряжение выходного сигнала составит 1 мВ и потребуется акселерометр с более высокой чувствительностью.

Разрешение связано с минимальным значимым сигналом акселерометра. Этот параметр базируется на уровне собственных шумов акселерометра (а при выборе IEPE акселерометра, и на внутренней электронной схеме) и выражается в g rms.

Читать еще:  Как снять входную дверь

Перейти в каталог «Датчики ускорения»

Датчик колебаний, как альтернатива датчику ударов

Практически каждый владелец автомобиля, оборудованного сигнализацией, знаком с ситуацией, когда охранная система считает своим долгом сработать от любого сильного и близкого источника вибрации. В общем-то, такие случаи не считаются чем-то необычным и при их достаточно редком появлении они особо не напрягают ни самого автолюбителя, ни окружающих. Несколько иначе все обстоит тогда, когда стоянка автомобиля находится неподалеку от стройки (со всеми сопутствующими в виде отбойных молотков, компрессоров, механизмов для забивки свай и пр.) или, вообще, поблизости от военного аэродрома, на котором базируются реактивные истребители. Тут уж сигнализация начинает «завывать» с раздражающей частотой и владелец авто вынужден либо выводить чувствительность датчика удара на самый нижний предел (такая настройка перестает быть помехой для многих «специалистов» по снятию колес) либо идти на полное отключение охранной системы. Казалось бы, положение безвыходное, однако решение проблемы все-таки есть и заключается оно в использовании вместо (или параллельно ему) штатному датчику удара, другой измерительный элемент, регистрирующий не только вибрацию и удары различного уровня, но также и наклоны кузова автомобиля (при посадке водителя, установке домкрата, открытии багажника, снятии внешней запаски и т.т.д.).

Первый вариант датчика колебаний

Даже в наши дни различные измерительные и бытовые приборы используют не цифровые, а стрелочные индикаторы, работа которых основана на измерении тока проходящего через катушку, в результате чего образовывалось переменное магнитное поле, взаимодействующее с полем постоянного магнита и разворачивающее, таким образом, измерительный элемент снабженный стрелкой. Как оказалось подобные стрелочные миллиамперметры в состоянии успешно функционировать в реверсивном режиме, иначе говоря, если катушка будет физически перемещаться в поле постоянного магнита (например, при изменении вектора силы тяжести) – в ее витках сгенерируются небольшие токи, которые достаточно просто измерить.

В целом, идея состоит в размещении миллиамперметра в перевернутом состоянии, когда стрелка, снабженная небольшим грузом, начинает играть роль своеобразного маятника, при перемещении которого на выходах прибора появляется пропорциональное напряжение. Для усиления такого выходного сигнала понадобиться создать достаточно простую схему с привлечением минимума комплектующих элементов.

В качестве груза, прикрепленного к концу стрелки, можно использовать небольшой участок изоляции от провода соответствующего диаметра. Если применить два миллиамперметра, установленных под углом 90° по отношению друг к другу, и соединить их последовательно – появляется возможность регистрировать колебания по двум осям. В качестве основы для схемы используется операционный усилитель 741 серии (или его аналог). При помощи переменного резистора номиналом 4,7 кОм осуществляется изменение чувствительности датчика в достаточно широких пределах. Что касается типа используемого миллиамперметра, то его здесь выбор некритичен, главное чтобы последовательно с катушкой не был бы подключен резистор (впрочем, его можно просто удалить). При желании датчик можно запитать от автономной батареи. Выходной сигнал снимается между точками «ОС» и плюсом источника питания.

Второй вариант датчика колебаний

В данном случае в качестве источника сигналов предлагается применить магнитную рамку микроамперметра М476/1 в прошлые года повсеместно используемой в качестве измерителя уровня записи на многих магнитофонах, в том числе и на переносных кассетниках. Для изготовления датчика такой микроамперметр следует вскрыть (такую операцию можно сделать при помощи обычного ножа).

Далее, на конец стрелки одевается и закрепляется соответствующий груз (по весовым параметрам прекрасно подойдет кусочек трубчатого припоя диаметром 3мм и длиной в 5мм). Необходимо проследить за тем, чтобы между шкалой и грузом оставалось расстояние не менее 1,5мм. Края шкалы ограничиваем демпферами из мягкого поролона (5х5х5 мм) после чего корпус микроамперметра вновь склеиваем в одно целое.

Ниже приведена электрическая схема датчика колебаний:

Вполне понятно, что В1, в данном случае, — микроамперметр М476/1, причем полярность его подключения особого значения не имеет. В качестве основного усилителя сигнала, наводимого в рамке микроамперметра, используется операционник КР140УД1208. При незначительных колебаниях и достижении выходного напряжения операционного усилителя уровня, достаточного для срабатывания логического элемента D2.3 формируется сигнал тревоги первого уровня (на D2.1 сигнал отсутствует за счет падения напряжения на диодах VD1 и VD2). Сигнал тревоги второго уровня образуется при сильном раскачивании кузова автомобиля, когда создаются условия для срабатывания элемента D2.1. В роли сборки D2 можно применить микросхему К176ЛА7. Резистор R2 используется для подстройки чувствительности датчика. Переключатель S1 позволяет использовать датчик в охранных сигнализациях как с нормально разомкнутыми контактами, так и нормально замкнутыми.

Виброметр

Вибрация – это механические колебания твердых тел. Частным примером колебания твердых тел являются динамические машины на производстве (насосы, вентиляторы, редукторы, турбины, компрессоры, электродвигатели), работа которых обязательно, в большей или меньшей мере, сопровождается вибрацией. Во многих случаях вибрация машин сопровождается повышенным уровнем шума или избыточным выделением тепла.

Вибрация машин – это колебательное движение машины в целом или отдельных ее узлов. При значительном уровне вибрации могут наблюдаться недопустимые относительные перемещения деталей или недопустимые значения периодических инерционных сил, способных привести к разрушению конструкции. Иными словами, чрезмерная вибрация приводит к ухудшению качества работы машины и преждевременному ее выходу из строя.

Подобно тому, как повышенное давление человека сигнализирует о неполадках со здоровьем, так и повышенная вибрация машины является верным признаком «ухудшения здоровья» машины. Проводя постоянный контроль уровня вибрации машины, можно получить достоверную информацию о ее техническом состоянии и преждевременно обнаруживать и устранять зарождающиеся дефекты и, как следствие, на 18% сократить затраты на ремонтные издержки.

Контроль вибрации проводится с помощью специальных приборов – виброметров (например, портативными приборами BALTECH VP-3410 серия «VibroPoint»), которые определяют один или несколько параметров вибрации: виброперемещение, виброскорость или виброускорение.

Рис.1. Схема виброметра.

Все виброметры по способу проведения измерений подразделяются на контактные и бесконтактные, а по принципу действия – на следующие типы:

  • оптические;
  • вихретоковые;
  • индукционные;
  • пьезоэлектрические;
  • емкостные и др.

Рассмотрим вкратце принцип действия каждого типа виброметров. Работа оптических виброметров основана на принципе Допплера – изменении длины волны отраженного сигнала за счет вибрации изучаемой поверхности. Отраженный сигнал регистрируется оптическим интерферометром, обрабатывается электроникой и на выходе получают данные по параметрам вибрации. Оптические виброметры обладают хорошей точностью и быстродействием, но главное их преимущество заключается в бесконтактном методе определения вибрации. Главный же существенный недостаток оптических виброметров – существенно высокая цена по сравнению с виброметрами других типов.

В вихретоковых виброметрах датчиком вибрации является вихревой пробник, в рабочей зоне которого расположена катушка индуктивности. На катушку индуктивности подается сигнал высокой частоты, который наводит на исследуемой электропроводящей поверхности вихревые токи. Последние, в свою очередь, изменяют параметры сопротивления самой катушки, причем величина этих изменений пропорциональна величине зазора между исследуемой поверхностью и торцом датчика.

Рис.2 Схема вихревого пробника

По принципу изменения характеристик электромагнитного поля катушки датчика электропроводящей поверхностью работают и индукционные виброметры, в которых регистрируются изменения индуктивности катушки в зависимости от расстояния до исследуемой ферромагнитной поверхности.

Рис.3 Схема индуктивного виброметра

Индукционные и вихретоковые виброметры доступны по цене, обладают приемлемой точностью измерений, но способны регистрировать вибрацию только токопроводящих поверхностей, и будучи установленными от них на расстоянии 3-5 мм.

Пьезоэлектрические виброметры, как следует из самого названия, работают на пьезоэффекте – возникновении разности потенциалов на пьезокристалле при его механической деформации.

Рисунок 4. Схема пьезоэлектрического виброметра.

Пьезоэлектрический датчик устанавливается непосредственно на исследуемую поверхность и конструктивно представляет собой некоторую инертную массу, подвешенную на упругих пьезокристаллических элементах. Вибрации от исследуемой поверхности передаются к инертной массе, которая пытается сохранить положение равновесия, вызывая, тем самым, деформации упругих элементов. Сигнал, соответствующий величине деформации регистрируется и обрабатывается электроникой прибора и на выходе выдается сигнал по току, заряду или напряжению.

Относительным недостатком пьезоэлектрических виброметров является необходимость непосредственного контакта датчика вибрации с исследуемой поверхностью, что не всегда удобно при решении некоторых производственных задач. Но, благодаря небольшой цене, хорошей чувствительности, высокой разрешающей способности, надежности и устойчивости к внешним воздействиям, высокой скорости проведения измерений (до 100 машин за смену), пьезоэлектрические виброметры серии BALTECH VP являются лучшими инструментами для контроля вибрации.

Виброметры для контроля вибрации роторных машин измеряют параметры вибрации (виброскорость, виброперемещение или виброускорение) в частотном диапазоне от 10 Гц до 1000 Гц. Допустимые нормы вибрации регламентируются стандартом ISO 10816-1-97 «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях».

Проводя мониторинг вращающихся машин с помощью виброметров BALTECH VP и построив тренды с помощью программного обеспечения BALTECH-Expert, можно прогнозировать последующий уровень вибрации и сроки последующих ремонтов. Более того, виброметры могут быть использованы и для диагностики некоторых дефектов: расцентровки и дисбаланса роторов, состояния крепления машины к фундаменту и др.

Компания «БАЛТЕХ» рекомендует применение портативных виброметров – начиная с простейшей виброручки BALTECH VP-3405 и заканчивая автоматизированной системой контроля ПРОТОН-1000.

Виброконтроль роторных машин с помощью виброручки BALTECH VP-3405 или вибротестера BALTECH VP-3410 является самым доступным по цене, а с помощью виброметра-балансировщика «ПРОТОН-Баланс-II» можно еще и провести точную балансировку роторов (методом трех пусков с пробной массой) в собственных опорах.

Для обучения правилам измерения вибрации с помощью виброметров в лицензионном Учебном центре «БАЛТЕХ» предусмотрен специальный обучающий курс ТОР-103 «Основы вибродиагностики. Виброметры для виброконтроля», пройти который рекомендуется всем начинающим специалистам.

Если в вашей компании отсутствуют собственные специалисты-вибродиагносты, то компания «БАЛТЕХ» предлагает воспользоваться услугами специалистов нашего Отдела Технического Сервиса (ОТС), которые быстро и качественно выполнят все работы по вибродиагностике, вибромониторингу и виброконтролю любого типа роторного оборудования (насосов, компрессоров, вентиляторов, электродвигателей, редукторов, подшипников качения и скольжения).

Простой измеритель вибрации своими руками. Датчик вибрации. Рекомендуемые схемы подключения пьезоэлектрических датчиков с зарядовым выходом

Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет нигде в интернете — только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая — с десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:

Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 — влияет на чувствительность, меньше сопротивление — выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации
возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали — можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь:

Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет «0” (не светится светодиод или микроамперметр показывает «0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки). Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа (один из них называют «+” другой «-”) и один выход. Если подаем на вход «+” напряжение больше чем на вход «-«, на выходе имеем «+” если же наоборот на выходе будет «-«. По схеме напряжение входе «+” меньше чем на входе «–» на пару милливольт и поэтому на выходе имеем «-«. Теперь пьезо динамик — такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на входе «+”и, следовательно, имеем на выходе тоже «+”. Заранее благодарю за повторение моих конструкции. Автор статьи — Леша «левша», устройство испытал: АКА.

Читать еще:  Зачем нужны слуховые окна

Данная статья описывает устройство сейсмического датчика-детектора представляющего собой чувствительный электронный узел, способного зафиксировать даже очень слабый уровень вибрации в земной коре.

В конструкции сейсмического детектора применен пьезоэлектрический датчик вибрации , который очень чувствителен к вибрациям и сотрясениям. Данную схему можно использовать для обнаружения сотрясений всевозможных объектов, вибраций происходящих в земной коре, либо как составную часть охранной системы.

Описание работы сейсмического детектора на пьезоэлементе

Как уже было сказано выше, основным элементом, который чувствителен к вибрациям, является простой зуммер (пьезоэлемент). Он довольно часто применяется в устройствах, предназначенных для обнаружения вибраций и сотрясений, к примеру, в охранной сигнализации для велосипеда. Преимуществом схемы является не только низкая цена, но и проста в монтаже датчика, зачастую просто путем приклеивания на контролируемой поверхность.

Микросхема DA1 — операционный усилитель типа LM741, предназначена для усиления слабых сигналов от пьезоэлемента. Усиленный сигнал с выхода операционного усилителя через резистор R6 поступает на базу транзистора VT1. В результате этого транзистор открывается и на входе 2 таймера NE555 появляется сигнал низкого уровня (менее 1/3 напряжения питания).

На таймере NE555 построен классический ждущий мультивибратор, который запускается по низкому сигналу на выводе 2. В результате запуска мультивибратора, на его выходе (вывод 3) появляется сигнал включающий зуммер (с встроенным генератором) и зажигается светодиод.

Продолжительность сигнала определяется элементами RC-цепи (R8 и С2). С указанными значениями на схеме, этот период составляет примерно 3 минуты. По истечении этого времени устройство переходит в исходное состояние.

Датчик вибрации своими руками — дополненный простой системой крепления и несколькими спаянными «на весу» компонентами, пьезоэлемент может детектировать механические удары. Собственно датчик состоит из керамического пьезоэлемента и тонкого латунного диска. Такого рода сборка раньше использовалась во многих телефонных аппаратах в качестве источника вызывного сигнала или в наручных часах с будильником.

В зависимости от способа монтажа, датчик может воспринимать удары в направлении одной оси (Рисунок 16) или трех (Рисунок 16). Для одно осевого измерения припаяйте один край датчика к завернутому в монтажное основание винту. На противоположный край припаяйте груз, чтобы увеличить чувствительность датчика. Пара небольших крючков, прикрепленных к основанию, ограничивает движение датчика, не допуская поломки пьезоэлемента.

Если вы хотите, чтобы система была чувствительна к ударам в трех измерениях, один край датчика припаяйте к винту точно так же, как в первом случае. На другой край припаяйте винт с плоской потайной головкой, направленный в сторону, противоположную монтажному основанию. Используйте пару контр-гаек, чтобы увеличить полярный момент инерции конструкции. Положение контр-гаек определяет чувствительность пьезоэлемента. В обоих случаях, для того чтобы не нарушить соединение пьезоэлемента с латунным диском, время пайки должно быть минимально возможным.

На Рисунке 2 изображена простая схема сигнализации. При хорошем щелчке по пьезозлементу на 10-мегаомном резисторе R1 возникнет напряжение в несколько вольт. После этого микросхема сдвоенного таймера 1с1 в течение одной минуты будет включать питание звукового излучателя с периодичностью 1 с. Излучатель звука имеет собственную встроенную схему управления, генерирующую пронзительный сигнал со звуковым давлением 90 дБ.

Виброметр – это прибор для измерения параметров вибрации: виброускорения, виброскорости, виброперемещения и частоты колебаний. Он простой в использовании и не требует специальной подготовки.

Выделяют две группы виброметров:

  • для измерения вибрации вращающегося оборудования;
  • для измерения вибрации, воздействующей на человека для целей охраны труда.

Виброметры для измерения вибрации вращающегося оборудования

Виброметр измеряет и оценивает вибрацию агрегатов с вращающимися частями. Это — двигатели, насосы, вентиляторы, генераторы. Вибрация таких агрегатов повторяется с каждым оборотом вала.

Виброметры измеряют интегральное значение вибрации (одно число). Самое популярное значение – , так как существуют стандарты для определения состояния агрегата по СКЗ виброскорости. Это число пропорционально мощности сил, вызывающих вибрацию агрегата.

Чаще всего вибрация в виброметрах измеряется . Этот диапазон указан в ГОСТ и позволяет измерять одинаковое значение вибрации на разных приборах.

Виброметр – это очень полезный прибор для оценки состояния оборудования. Максимальное значение вибрации, при котором состояние агрегата считается аварийным . Значение задаётся в паспорте на агрегат или в ГОСТ ИСО 10816-1-97. «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях». Сравнение текущей вибрации с нормой позволяет оценить состояние агрегата.

Измерение вибрации виброметром очень быстрое и не требует подготовительных работ. Можно измерить 100 агрегатов за смену с выдачей отчётов о состоянии оборудования на предприятии.

Значения вибрации, измеренные через некоторое время (например, через 1 месяц) позволяют строить прогноз развития вибрации и планировать сроки следующих ремонтов. Это даёт значительную экономию денег, по сравнению с плановыми ремонтами. Такая система планирования ремонтов используется в нашей программе Аврора-2000 .

Значение вибрации, измеренное виброметром можно использовать и для диагностики дефектов агрегата. Например, по СКЗ виброскорости отлично диагностируется расцентровка и небаланс . Состояние крепления к фундаменту тоже проще оценить виброметром. Виброметром даже можно балансировать агрегат не используя отметчик фазы (метод трех пусков с пробными массами).

При этом виброметры значительно дешевле виброанализаторов и проще в работе. Однако, для изучения сложных случаев дефектов необходим виброанализатор и опыт вибродиагностики.

Виброручка ViPen СКЗ виброскорости на экране

Современные виброметры дополнительно имеют режимы измерения спектров и сигналов, память для сохранения замеров и передачи их в компьютер, режим измерения по маршруту, датчики температуры, оборотов и ударных импульсов от подшипников качения.

В виброанализаторах всегда есть режим виброметра. Он делается программно и не удорожает изготовление прибора.

Внутренний и внешний датчик

Виброметры имеют внутренний датчик вибрации, встроенный в корпус прибора или внешний датчик, подключённый к прибору проводом. Внутренний датчик – это компактность прибора, а внешний датчик позволяет измерить вибрацию в труднодоступных местах.

Мы выпускаем виброметры:

Виброметры для измерения вибрации, воздействующей на человека

Измерение такой вибрации используется в сфере охраны труда. Приборы отличаются от приборов для измерения вибрации вращающегося оборудования. Они называются виброметры-шумомеры.

Прибор измеряет мощность вибрации за какой-то период времени, например, за рабочую смену, показывает мощность вибрации в полосах частот. Вибрация разных частот оказывает разное влияние на человека, поэтому используются нормирующие коэфициенты для частных полос. В дополнение шумомеры умеют измерять акустический шум на рабочем месте.

Предельные значения вибрации нормируется СанПиНами. Библиотеку этих нормативных документов можно найти на сайте НТМ-Защита:

Не хватает информации?

Я отвечу Вам и дополню статью полезной информацией.

Датчик вибрации Ардуино

Датчики вибрации Ардуино (их еще иногда называют датчиками сигнализации) применимы для выявления внешних воздействия вибрационного характера и широко используются в противоугонных автомобильных системах, различных охранных сигнализациях, позволяют детектировать вибрации при начинающемся землетрясении. В этой статье мы рассмотрим строение датчика и схему подключения к платам Arduino.

Особенности конструкции и принцип действия датчика вибрации

Основной элемент датчика – металлическая пружина гибкой структуры, расположенная во внутренней части трубки из пластика. При наличии каких-либо воздействий на нее она начинает колебаться. Усиление сигнала происходит за счет его подачи сначала на операционный усилитель, а потом на выход аналогового типа. Важным элементом датчика вибрации является потенциометр, который регулирует чувствительность прибора, и позволяет устанавливать необходимый порог срабатывания.

Датчик вибрации имеет три выхода:

  • Земля;
  • Питание;
  • Выход аналогового сигнала А0.

Находящийся на плате потенциометр позволяет настроить его чувствительность. Он представляет собой переменный резистор c сопротивлением регулируемого типа. На плате датчика также присутствуют светодиоды, которые сигнализируют о наличии питания. Кроме того, некоторые разновидности оснащаются цифровым выводом D0, который выдает логический ноль при достижении порогового значения уровня вибрации.

В состоянии покоя модуль находится в разомкнутом состоянии, и протекания тока по нему нет. При наличии внешних вибрационных воздействий за счет раскачивания пружины происходит кратковременное замыкание контактов. В результате происходит сработка датчика, и на выходе появляется логический 0.

Технические параметры датчиков вибрации для Ардуино (могут отличаться в зависимости от модели устройства):

  • Питающее напряжение от 3 до 5 В;
  • Ток потребления 4-5мА;
  • С наличием или отсутствием цифрового выхода;
  • С наличием или отсутствием регулировки чувствительности.

Датчики могут отличаться по весу и габаритам, но обязательно содержат монтажное отверстие для крепления к плате.

Варианты применения

Наиболее актуальным применение датчиков вибрации может быть реализовано в сфере охранной сигнализации различного назначения. За счет высокого уровня чувствительности такие устройства могут реагировать на вибрации широкого диапазона интенсивности, улавливая колебания во всех плоскостях. Благодаря простому способу подключения, датчики вибрации применяются для реализации самых разнообразных проектов:

  • Системы охраны;
  • Сигнализации;
  • Электронные замки;
  • Детекторы движения;
  • Противоугонные системы;
  • Сейсмостанции;
  • Детские игрушки;
  • Бытовые приборы;
  • Спортивный инвентарь.

Пример реализации

Схема подключения датчика вибрации к ардуино

Вариантом использования вибрационного датчика может стать охранная сигнализация, в которой при ударе о поверхность, с закрепленным на ней устройством, происходит сработка (в данном примере загорится светодиод, присоединенный к пину 13). Для проекта следует подготовить такие детали:

  • плату Arduino Uno;
  • датчики вибрации 801S или Logo sensors v1.5;
  • макетную плату;
  • соединительные провода.

Сборка схемы производится согласно рисунку. Цифровой вывод DO соединяем с цифровым пином 2. При наличии вибраций значение сигнала многократно увеличивается и при достижении порогового значения, которое устанавливается потенциометром, на вывод DO подается логическая единица. Мы обрабатываем эту ситуацию, считывая значение функцией digitalRead, после чего подаем с помощью функции digitalWrite 5В на порт 13 и загорается встроенный в плату светодиод.

Контроль вибрации — это просто

Для всех механизмов, содержащих движущиеся массы, характерно наличие вибрации, которая, при превышении допустимых значений, приводит к преждевременному ремонту механизма, к отказу или аварии. Обеспечение надежной и безопасной работы оборудования во многом связано с внедрением и использованием методов неразрушающего контроля. Наиболее простым и информативным параметром для комплексной оценки технического состояния машин и оборудования является вибрация. Минимизация затрат на ремонт и обслуживание оборудования невозможна без диагностики и мониторинга вибрации оборудования.

Контроль вибропараметров позволяет решать как минимум три важных технико-экономических задачи:

  1. знание текущего состояния оборудования;
  2. превентивный ремонт оборудования при ухудшении вибропараметров-предотвращение аварий на устранение их последствий;
  3. вывод оборудования в ремонт не по календарным планам, а по реальному состоянию- позволяет продлить межремонтные интервалы и сэкономить на ненужных ремонтах (например не производить плановую замену подшипников при их нормальном состоянии)

Для целей контроля вибрации ООО НТФ «Микроникс» выпускает:

  • вибродатчик ВД06А c ICP выходом,
  • магнитное крепление для датчика вибрации КМ2,
  • измерительный преобразователь сигнала вибродатчика ИПВ-3,
  • шкафы виброконтроля (ШАИ-06-008).

Датчик вибрации ВД06А c ICP выходом предназначен для преобразования механически колебаний в электрические сигналы, пропорциональные ускорению корпуса вибропреобразователя. ВД06А применяется в качестве чувствительного элемента виброизмерительных и вибродиагностических систем. Датчик вибрации ВДО6А включен в Государственный реестр типа средствизмерений.Вибропреобразователь имеет встроенный согласующий усилитель. За счет расширенного диапазона рабочих частот от 1 до 8000 Гц, виброизмерение возможно на всех типах механизмов (вращающихся, возвратно-поступательных и т.д.). Рабочий диапазон измеряемых виброускорений 0-500 м/с2. Диапазон рабочих температур от минус 50 до + 70°. ВД06А имеет влагобрызгозащищённое исполнение. Благодаря встроенному усилителю вибродатчик можно подключить на значительном расстоянии от вторичной аппаратуры (до 20. 30 м). Креплениедатчика ВД06А на поверхность исследуемого объекта возможно стационарно и временно. При стационарной установке датчик крепится на шпильку М5, при временной — на магнитное крепление КМ2.

Магнитное крепление КМ2 предназначена для обеспечения возможности быстрого съёма/установки датчиков вибрации на измеряемую поверхность.

Контактная плоскость пятки выполнена специальным образом и обеспечивает надёжное крепление, как на плоские поверхности, так и на цилиндрические поверхности с диаметром более 100 мм (буксы, обоймы подшипников и т.д.). Отрывное усилие при креплении датчика к плоской стальной магнитомягкой поверхности составляет не менее 12 кг, при креплении к цилиндрической поверхности — ещё больше. Конструкция пятки выполнена из полированной нержавеющей стали на основе магнитов неодим-железо-бор. КМ2 имеет аксиальную и тангенциальную точки крепления для внешнего объекта. Крепление датчика осуществляется шпилькой М5.

Устройство ИПВ-3 предназначено для преобразования сигналов ВД06А и вибродатчиков других типов с ICP-выходом в сигнал виброскорости. Базовым типом выхода устройства выход 4-20 мА. Опционально могут устанавливаться интерфейсный выход RS485 либо RS232 (протокол Modbus-RTU) ирелейные выходы (2 шт.) с предустанавливаемыми уровнями срабатывания (ка правило-«предупредительный» уровень иуровень «авариный» -для отключения. Интерфейсный выходпредназначен для передачи информации в системы АСУТП. Дополнительная его функция — возможность конфигурировать параметры устройства ИПВ-3. Устройство также может комплектоваться выносным блоком индикации типа БКД или аналогами, отображающими сигнал 4-20ма на цифровом индикаторе в единицах виброскорости.

Многовариантное исполнение устройствадает возможность минимизировать затраты при приобретении преобразователя, позволяя отказаться от избыточных опций. В то же время, устройства, приобретенные без интерфейса RS232/485, могут быть модернизированы самим покупателем до интерфейсного варианта путем приобретения отдельной платы интерфейса нужного типа (232 или 485).

Для непрерывно мониторинга датчиков вибрации и температуры, формирования предупредительной и аварийной сигнализации, сигнала разрешения работы, а также передачи показаний датчиков во внешнюю информационную систему ООО НТФ «Микроникс» выпускает комплектные шкафы виброконтролясерии ШАИ-06-008. Шкафы обеспечивают:

  • непрерывный опрос датчиков вибрации и температуры:
  • отображение данных с датчиков на индикаторе контроллера;
  • передачу данных с датчиков в автоматизированную систему управления (АСУ);
  • управление выходом разрешения работы (реле).
  • формирует журнал событий;
  • местное и дистанционное изменение уставок;
  • автоматическое и ручное управление выходом разрешения работы.

Подготовлено НТФ «Микроникс»

Датчик вибрации своими руками

Датчик вибрации, как его сделать своими руками.

Здесь представлена ​​чувствительная сигнализация с использованием датчика вибрации для применения в качестве простой системы наблюдения для защиты дверей и окон. Он также может быть использован в качестве защиты багажа или шкафчика. Схема издает звуковой сигнал и зажигает белый светодиод, когда обнаруживает даже небольшую вибрацию. Он компактен, работает от батареи и может быть заключен в небольшую коробку.

Читать еще:  Если что-то пойдет не так, пострадает вся конструкция; Установка насоса в систему отопления частного дома

В схеме используется миниатюрный датчик вибрации SW18020 P от Gaoxin. Его можно использовать различными способами для определения механических вибраций, чтобы активировать сигнализацию и другие системы наблюдения в различных проектах по обнаружению вибрации.

Датчик вибрации

Датчик вибрации имеет два электрических контакта, которые не касаются друг друга в состоянии холостого хода. При любом движении или вибрации контакты датчика замыкаются и соприкасаются друг с другом. Когда движение или вибрация прекращаются, контакты датчика возвращаются в исходное положение, далеко друг от друга. Замкнутые контакты во время вибрации запускают цепь, подключенную к нему. Авторский прототип показан на рис. 1.

Рис. 1: Авторский прототип

Датчик вибрации имеет небольшой пружинный механизм, который заставляет контакты касаться друг друга, когда вибрация возникает выше определенного порогового уровня. Два вывода, выходящие из датчика, изолированы с сопротивлением более 10 мОм. Во время вибрации пружина внутри датчика вибрирует и кратковременно замыкается между двумя клеммами.

Клеммы датчика вибрации не имеют полярности, но один штифт толстый. Он подключен к Vcc через резистор, а тонкий контакт подключен к цепи, которая должна быть запущена.

Максимальное рабочее напряжение датчика составляет 12 В постоянного тока, но оно работает даже при трех вольтах. При использовании его в цепи он потребляет ток менее 5 мА и обеспечивает сопротивление контакта около 10 мОм в открытом состоянии и менее 5 Ом в состоянии контакта. Это очень надежно, и его время отклика составляет менее 2 мс. Работает более 500 000 раз без поломок. Датчик вибрации показан на рис. 2.

Рис. 2: Датчик вибрации

Схема и работа

Принципиальная схема датчика вибрации показана на рис. 3. Он построен вокруг таймера NE7555 (IC1), NPN-транзистора BC547 (T1), пьезо-зуммера (PZ1) и нескольких других компонентов.

Рис. 3: принципиальная схема датчика вибрации

Схема проста. Таймер NE7555 настроен в моностабильном режиме для включения зуммера и белого светодиода в течение примерно двух минут, когда датчик обнаруживает вибрацию. Датчик вибрации напрямую подключен между контактом 2 запуска и контактом 1 заземления IC1. NE7555 является CMOS-версией таймера NE555 и работает от трех вольт.

Датчик смещен резистором R1, который также поддерживает триггерный вывод 2 IC1 в высоком состоянии в режиме ожидания. Когда датчик ощущает небольшую вибрацию, его контакты замыкаются и переводят вывод 2 таймера на уровень земли. Это запускает таймер, и его выходной сигнал повышается примерно на две минуты в зависимости от значений компонентов синхронизации R2 и C1. Когда выходной сигнал таймера становится высоким, транзистор T1 проводит питание на белый светодиод 0,5 Вт и зуммер.

Схема питается от 4,5-вольтовой аккумуляторной батареи, обычно используемой в беспроводных телефонах. Его можно заряжать с помощью зарядного устройства для мобильного телефона, если имеется подходящая розетка. LED2 указывает на зарядку аккумулятора.

Сборка и тестирование

Схема односторонней печатной платы для датчика вибрации показана на рис. 3, а компоновка его компонентов на рис. 4. Соберите схему на печатной плате и поместите в подходящую коробку. Подключите датчик вибрации к цепи с помощью разъема CON1. Приклейте датчик сверху коробки, если он будет использоваться для защиты багажа, или на окне или двери, если он используется в качестве вибрационной сигнализации.

Рис. 4: Компоновка печатной платы датчика вибрации. Рис. 5. Компоновка печатной платы.

Загрузить PDF-файлы с печатной платой и компоновкой компонентов: нажмите здесь

Схема работает от батареи 4,5 В. Для зарядки аккумулятора требуется регулируемый источник питания 5В.

Датчики разрушения и вибрации

Задача датчиков вибрации и разрушения — сообщать о силовом воздействии на какое-нибудь препятствие (вырезание стекла, разрушение перегородки, стены домкратом, топором или кувалдой), преодолении забора, проволочной решетки, естественного барьера (живой изгороди) и т.д. У матерых воров есть способ краж с применением мощного домкрата. Преступники с помощью него ломают стену и проникают в дом или магазин. В настоящей статье описаны устройства противодействия таким вторжениям.

Датчик вибрации с механическим контактом — это наиболее часто используемый датчик разрушения препятствий. Применяются два основных типа:

  • датчик с тонкой пружинящей металлической пластинкой, на которой закреплен подвижный инерционный груз. Нажимной винт проходит сквозь него, позволяя регулировать упругость контакта. Увеличение давления винта на неподвижный контакт уменьшает чувствительность датчика к ударам, ослабление же винта повышает чувствительность;
  • датчик с пружиной и подвижным инерционным грузом — экономичный вариант датчика с пластинкой и грузом. Небольшой груз, закрепленный на одном конце пружины, размещен внутри илиндрического контакта, который конструктивно может иметь вид металлического кольца или простой плоской шайбы. Во время удара груз сталкивается с цилиндрическим контактом и цепь замыкается.

Датчик вибрации с шариками — третий тип, редко применяемый (см. рис.). В покое электрический контакт замкнут. Один или оба шарика свободно лежат на двух контактах, которые конструктивно могут быть выполнены в виде двух металлических перилец. В момент удара шарики отскакивают от контакта, вызывая кратковременные размыкания, анализируемые электронной схемой, посредством которой регулируется чувствительность к ударам.

Чувствительность определяется по длительности размыкания контакта при отскакивании шариков друг от друга.

Датчики разбития стекла
Принцип работы этих датчиков — реагирование на колебания с частотой порядка 1500 Гц, производимые разбиваемым стеклом, или колебания высокой частоты, обусловленные внутренними напряжениями стекла, когда его раскалывают или вырезают.

Датчик электромеханический заключен в герметичную ампулу; eе контакты выполнены в виде двух
электрических нитей, полупогруженных в ртуть. Колебания, генерируемые при разбитии стекла, вызывают кратковременные размыкания электрического контакта.

Акустический датчик предназначен для улавливания колебани с частотой около 1500 Гц, которые появляются при разрушении стеклянных перегородок. Сигнал, принятый микрофоном, усиливается и анализируется электронной схемой, связанной с датчиком.

Датчик пьезоэлектрический — это более точный детектор, поскольку обладает высокой избирательностью. Он не реагирует на низкие частоты, возникающие при ударе по стеклу, если оно не разбилось, а улавливает колебания около 200 кГц, обусловленные внутренним напряжениями разбиваемого стекла. Таким образом, исключаются ложные срабатывания сигнализации, случающиеся, например, при проезде тяжелого или скоростного автомобиля вблизи стеклянной перегородки или при проникновении сквозь стену авиационного гула.

Датчики воздействия на стены

Пъезокерамические, или сейсмические, датчики позволяют регистрировать вторжение через перегородку или стену с помощью механических и термических инструментов. Эти датчики, как правило, жестко вмонтированы в капитальные стены комнат или перегородк либо приклеены к стенке сейфа. Пьезокерамический приемник преобразует механические колебания в сигнал частотой в нескольк килогерц, обрабатываемый одной из электрических схем, которые определяют словия тревоги. Датчики с ленточными проводниками представляют собой сетку из электрических проводов или ленточных проводников, вмонтированных в охраняемую перегородку или, приклеенных к ней. Разрушение одного из проводов либо одной из ленточек шлейфа влечет за собой включение сигнализации.

Кабельные датчики деформации или разрыва перегородки используются главным образом для защиты внешних ограждений, таких как забор. Штурм проволочной решетки или нарушение ее целостности регистрируется как изменение диэлектрической проницаемости коаксиального кабеля, используемого в качестве датчика. Такая конструкция позволяет выявить точное место, в котором кабель был деформирован или разорван.

В нашем интернет-магазине вы можете приобрести и заказть установку датчиков вибрации и разрушения.
Звоните!

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

ESP32 и датчик температуры и влажности HDC2080 с малым энергопотреблением

В этой статье мы рассмотрим еще один датчик влажности и температуры от TI — на этот раз это HDC2080, который мы подключим к ESP32, в данном случае к Wemos Lolin32, но вы можете использовать любой модуль на основе ESP32.

Счетчик Гейгера своими руками на основе ESP8266

Счетчик Гейгера – это прибор, используемый для обнаружения и измерения ионизирующего излучения. Это один из самых известных в мире приборов для обнаружения излучения, так как он может использоваться для обнаружения ионизирующего излучения, такого как альфа-частицы, бета-частицы и гамма-лучи, и обычно используется в качестве портативного прибора для радиационного обследования, предупреждая своих пользователей знакомым щелкающим шумом, когда они входят в область опасных уровней окружающей радиации. Счетчик обнаруживает ионизирующее излучение с помощью эффекта ионизации, создаваемого в трубке Гейгера-Мюллера, который, как вы, наверное, догадались, вероятно, и названа в честь немецкого физика.

Несмотря на то, что в области счетчиков Гейгера в Интернете дается немало информации, сегодняшний пример покажет разработку, в которой объедняется ESP8266 с сенсорным дисплеем для создания уникального устройства с пользовательским графическим интерфейсом, с помощью которого информация отображается очень удобным способом.

Arduino и датчик влажности, температуры и давления BME680

Датчик BME680 от Bosch дает вам все, что вам нужно, в одном маленьком корпусе. Этот компактный сенсор обладает возможностями измерения температуры, влажности, атмосферного давления и газа. Он может передавать данные по интерфейсу SPI или I2C, при этом все эти возможности можно приобрести по сравнительно небольшой цене.

Как измерить ток с помощью осциллографа

Измерение тока является простой задачей – все, что вам нужно сделать, это подключить мультиметр к цепи, которую вы хотите измерить, и счетчик даст вам чистое значение тока для использования в дальнейшем. Но иногда нет возможности разорвать цепь, чтобы соединить мультиметр с тем, что вы хотите измерить. Это также решается довольно просто – вам просто нужно измерить напряжение на известном сопротивлении в цепи, тогда ток – это просто напряжение, деленное на сопротивление (из закона Ома).

Все становится немного сложнее, когда вы хотите измерить изменяющиеся сигналы. Это зависит от частоты обновления (количества выборок в секунду) мультиметра, и обычный человек может воспринимать только небольшое изменений в отображении в секунду. Измерение переменного тока становится немного проще, если ваш мультиметр измеряет среднеквадратичное напряжение (среднеквадратичное напряжение – это напряжение сигнала переменного тока, который будет передавать то же количество энергии, что и источник постоянного тока этого напряжения). Это измерение строго ограничено периодическими сигналами (прямоугольные волны и тому подобное строго исключены, если только среднеквадратическое значение не является «истинным», даже в этом случае нет никаких гарантий точности измерения). Большинство мультиметров также имеют низкочастотную фильтрацию, что предотвращает измерение переменного тока выше нескольких сотен герц.

Умная система полива растений на основе ESP8266, DHT11 и датчика влажности почвы

Большинство дачников и фермеров имеют немалые сельскохозяйственные угодия, и иногда становится очень трудно отследить каждый уголок возделываемой земли. Иногда существует вероятность неравномерного разбрызгивания воды при поливе. Это приводит к плохому качеству урожая, что в дальнейшем может привести к финансовым потерям. В этом проекте мы рассмотрим создание интеллектуальной ирригационной системы, использующей преимущества Интернета вещей, которая полезна в практическом плане и облегчает ведение сельского хозяйства.

Интеллектуальная система полива имеет широкие возможности для автоматизации всей системы полива. В данном случае мы создадим систему полива на основе механизма Интернета вещей с использованием модуля ESP8266 NodeMCU и датчика DHT11. Она будет не только автоматически орошать воду в зависимости от уровня влажности в почве, но и отправлять данные на сервер ThingSpeak для отслеживания состояния почвы. Система будет состоять из водяного насоса, который будет использоваться для разбрызгивания воды на землю в зависимости от условий окружающей среды, таких как влажность воздуха, влажность почвы и температура.

Дальномер на основе Arduino и ToF-датчика расстояния VL6180

ToF (Time-of-Flight) или времяпролетная технология – это широко используемый метод измерения расстояния до удаленных объектов с помощью различных датчиков измерения расстояния, таких как ультразвуковой датчик. Измерение времени, измеряемого частицей, волной или объектом для прохождения расстояния через среду, называется временем пролета (ToF). Это измерение может затем использоваться для расчета скорости или длины пути. Его также можно использовать для изучения частиц или свойств среды, таких как состав или скорость потока. Движущийся объект может быть обнаружен прямо или косвенно.

Ультразвуковые дальномеры являются одними из первых приборов, использующих принцип времени пролета. Эти устройства излучают ультразвуковой импульс и измеряют расстояние до твердого материала на основе времени, затрачиваемого волной на отскок назад к излучателю. Этот метод также можно использовать для оценки подвижности электронов. На самом деле, он был разработан для измерения тонких пленок с низкой проводимостью, позже он был приспособлен для обычных полупроводников.

STM32F103C8 и датчик температуры и влажности DHT11: принцип работы, схема подключения, код

DHT11 – это датчик температуры и влажности, который, как следует из названия, используется для измерения температуры и влажности воздуха в конкретной среде или в замкнутом пространстве. Датчик обычно используется для мониторинга параметров окружающей среды во многих приложениях, таких как сельское хозяйство, пищевая промышленность, больницы, автомобили, метеостанции и т. д.

Датчик может измерять температуру от 0 °C до 50 °C с точностью до 1 °C. Он обычно используется в контролируемых средах, таких как системы вентиляции тепла, камеры температуры и т. д. для контроля температуры и принятия корректирующих мер. Диапазон измерения влажности составляет от 20% до 90% с точностью до 1%. Влажность указывает на количество водяного пара, присутствующего в воздухе. Значение влажности должно поддерживаться в контролируемом диапазоне во многих случаях, например, при производстве и хранении чайных порошков в помещении должна поддерживаться правильная влажность, иначе чай потеряет свой вкус и запах. Уровень влажности в жилых помещениях также должен поддерживаться в комфортных пределах. Идеальное значение влажности для максимального комфорта составляет от 50% до 65%. В данном примере мы узнаем, как связать популярный датчик температуры и влажности DHT11 с микроконтроллером STM32.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector