Bktp-omsk.ru

Делаем сами
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пайка титана оловом

Пайка титана и сплавов на основе титана

Пайка титана и его сплавов

Титан по совокупности физико-механических свойств является одним из важнейших современных конструкционных материалов. Он почти в 2 раза легче, чем углеродистые стали и многие цветные сплавы, его плотность равна 4,5 г/см3. Титан — высокопрочный (σв = 300 . 600 МПа) и пластичный (δ = 25 . 50 %) металл; его коррозионная стойкость в ряде агрессивных сред превосходит коррозионно-стойкие стали. Титан довольно широко распространен в природе; его в 10 раз больше, чем Mn, Cr, Cu, Zn, V, Ni, Co, W и Nb вместе взятых. Эти и ряд других ценных свойств открывают большие возможности для широкого применения титана в промышленности.

На поверхности титана всегда имеется альфированный слой, насыщенный атмосферными газами. Перед пайкой этот слой необходимо удалить пескоструйной обработкой или травлением в растворе следующего состава: 20 . 30 мл H2NO3, 30 . 40 мл НСl на литр воды. Время травления 5 . 10 мин при 20 °С. После такой обработки на поверхности титана все же остается тонкая оксидная пленка, препятствующая смачиванию его поверхности припоем. Поэтому иногда пытаются паять титан с применением специальных флюсов, по составу аналогичных флюсам для пайки алюминия. Но соединения титана, паянные с применением таких флюсов, не отличаются высоким качеством. Обычно пайку титана и его сплавов ведут в вакууме или аргоне, который тщательно очищен от примесей кислорода, азота и паров воды. Только в такой чистой атмосфере или в вакууме оксидная и нитридная пленки на титане растворяются в металле при условии, что температура пайки выше 700 °С.

Поэтому процесс пайки титана ведут обычно при температуре 800 . 900 °С, что способствует быстрой очистке поверхности титана и хорошему смачиванию его припоями.

Пайку титановых сплавов при более высоких температурах производят довольно редко (особенно печную), так как при его длительном нагреве при температурах выше 900 °С отмечаются склонность к росту зерна и некоторое снижение пластических свойств. Поскольку предел прочности основного металла при этом практически не снижается, то в отдельных случаях соединение титановых сплавов пайкой производят даже при 1000 °С.

Водород, всегда находящийся в титане и снижающий его пластичность, удаляется при пайке (или нагреве) в вакууме 10-2 Па при температуре около 900 °С, поэтому пайка титана в вакууме предпочтительнее, чем пайка в нейтральной атмосфере.

При выборе припоя, способа и режимов пайки необходимо иметь в виду, что титан образует хрупкие интерметаллиды в паяном шве почти со всеми элементами, входящими в припои. Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, предположительно менее хрупкие, чем с другими металлами. Иногда за основу припоев выбирают алюминий, который образует с титаном ограниченную область твердых растворов, что позволяет рассчитывать на получение менее хрупких паяных соединений.

При пайке титана в вакууме чистым алюминием, из-за образования в шве интерметал-лидных фаз, соединения имеют практически нулевую прочность. Толщина интерметаллидной прослойки уменьшается, если при пайке титана в качестве припоя применяется алюминий, легированный Си, Fe, Ge, Mg, Mn, Ni, Sb, Ti, Zr и Si. Все названные добавки (по 1 % в отдельности) способствуют подавлению роста интерметаллидной прослойки. Наиболее эффективное торможение обеспечивает 0,8 % Si в Al.

При пайке в вакууме титана таким припоем образуется интерметаллидный слой небольшой толщины состава AI3Ti, но прочность соединений не превышает 80 МПа. При применении другого припоя на основе Аl, содержащего 4,8 % Si; 3,8 % Си; 0,2 % Fe и 0,2 % Ni, при пайке титана ВТ1 в вакуумной печи при температуре 670 ± 10 °С и выдержке 5 мин прочность соединений равна 140 МПа. Пайка ТВЧ в среде аргона при температуре 720 ± 10 °С трубопроводов из сплава ВТ1 припоем на основе алюминия, содержащего: 0,3 % Fe; 0,35 % Si и 0,05 % Сu, дает возможность получить герметичные соединения с прочностью τ ср = 110 . 130 МПа.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают никелем химическим или гальваническим способом. Для увеличения сцепления никеля с титаном детали подвергают нагреву до 250 °С в течение 1 ч. После этого пайку производят теми же припоями и флюсами, которые используют для чистого никеля. Паять титан и его сплавы низкотемпературными припоями можно также после предварительного покрытия изделий оловом, серебром или медью.

Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10 . 20 мин в нагретое до 700 °С олово. Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса просушивают и применяют в мелкоразмолотом виде. Изделие покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350 . 400 °С. Медное покрытие может быть получено погружением изделия на несколько секунд в расплавленную хлористую медь или ее смесь с другими хлоридами меди при 650 . 700 °С.

Серебром титан покрывают методом погружения изделия в расплавленное серебро. После охлаждения деталь очищают от остатков флюса и шлака паром или кипячением в воде с последующей зачисткой наждачной бумагой или щеткой. Луженое изделие паяют легкоплавкими припоями с Тпл ≤ 200 °С с применением канифольных флюсов.

Технологический процесс пайки металлов

Титан по совокупности физико-механических свойств является одним из важнейших современных конструкционных материалов. Он почти в 2 раза легче, чем углеродистые стали и многие цветные сплавы, его плотность равна 4,5 г/см 3 .

Титан высокопрочный (σв = 30 ÷ 60 кгс/мм 2 ) и пластичный металл (б = 25 ÷ 50%). Коррозионная стойкость титана в ряде агрессивных сред превосходит нержавеющие стали.

Титан довольно широко распространен в природе, его в 10 раз больше, чем Мп, Сr, Си, Zn, V, Ni, Со, Mn, W и Nb вместе взятых. Эти и ряд других ценных свойств открывают большие возможности широкого применения титана в промышленности.

На поверхности титана всегда имеется альфированный слой, насыщенный атмосферными газами. Перед пайкой этот слой необходимо удалить пескоструйной обработкой или травлением в растворе следующего состава: 20-30 мл H2N03, 30-40 мл.НCl на литр воды.

Время травления 5-10 мин при комнатной температуре. После такой обработки на поверхности титана все же остается тонкая окисная пленка, препятствующая смачиванию титана припоем.

Поэтому иногда пытаются паять титан с применением специальных флюсов, по составу и химизму действия аналогичных флюсам для пайки алюминия. Но соединения титана, паянные с применением таких флюсов, получаются недостаточно качественными.

Обычно пайку титана и его сплавов ведут в вакууме или в аргоне марки А, который тщательно очищен от примесей кислорода, азота и паров воды. Только в такой чистой атмосфере или в вакууме окисная и нитридная пленки на титане растворяются в металле при условии, что температура пайки выше 700°С.

Поэтому процесс пайки титана ведут обычно при температуре 800-900°С, что способствует быстрой очистке поверхности титана и хорошему смачиванию его припоями.

Пайку титановых сплавов при более высокой температуре производят довольно редко, особенно печную, так как при длительном нагреве при температуре выше 900° С он склонен к росту зерна и к некоторому снижению пластических свойств.

Поскольку предел прочности основного металла при этом практически не снижается, то в отдельных случаях соединение титановых сплавов пайкой производят даже при 1000° С

Водород, всегда находящийся в титане и снижающий его пластичность, удаляется при пайке (или нагреве) в вакууме 10- 4 мм рт. ст. при температуре около 900° С, поэтому пайка титана в вакууме предпочтительнее чем пайка в нейтральной атмосфере.

При выборе припоя, способа и режимов пайки необходимо иметь в виду, что титан образует хрупкие интерметаллиды в паяном шве почти со всеми элементами, входящими в припои.

Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, предположительно менее хрупкие, чем с другими металлами.

Иногда за основу припоев выбирают алюминий, который образует с титаном oграниченную область твердых растворов, что позволяет рассчитывать получение менее хрупких, паяных соединений.

Из указанных припоев практическое применение нашли серебряные припои, которые позволяют получить при пайке в печи при температуре 950-1000°С высокопрочные паяные соединения.

Так, например, при пайке титана ВТ1Д чистым серебром в атмосфере аргона предел прочности (σв) паяных соединений составляет 18- 20 кгс/мм 2 , а при пайке серебром, легированным марганцем (10-15%), предел прочности (σв) паяных соединений достигает 28 кгс/мм 2 .

При этом соединения, паянные чистым серебром, неустойчивы против коррозии и в течение года (в городской атмосфере) снижают свою прочность на 25-30%.

Еще более высокие значения предела прочности паяных соединений можно получить при высокотемпературной пайке титана припоями на основе никеля или меди (σв = 30 кгс/мм 2 ), но эти металлы очень быстро растворяют его, вызывая сильную эрозию и охрупчивание в зоне швов.

Для получения более пластичных и прочных соединений с успехом применяют диффузионную пайку титана, сущность которой заключается в том, что изделие, паянное минимально необходимым количеством припоя, например никелем, медью, железом, кобальтом и другими металлами, выдерживают при температуре пайки до тех пор, пока в паяном соединении не образуется пластичный твердый раствор. Прочность соединений, полученных таким способом, близка к прочности основного металла.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают никелем химическим или гальваническим способом. Для увеличения сцепления никеля с титаном его подвергают нагреву до 250° С в течение 1 ч. После этого пайку производят теми же припоями и флюсами, которые применяют для чистого никеля.

Паять титан и его сплавы легкоплавкими припоями возможно также после предварительного покрытия деталей оловом, серебром или медью. Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10-20 мин в нагретое до 700° С олово.

Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса просушивают и применяют в мелкоразмолотом виде. Деталь покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350-400°С.

Медное покрытие может быть получено погружением изделия на несколько секунд в расплавленную хлористую медь или ее смесь с другими хлоридами меди при температуре 650-700°С.

Серебром титан покрывают методом погружения изделия в расплавленное серебро. После охлаждения деталь очищают от остатков флюса и шлака паром или кипячением в воде с последующей зачисткой наждачной бумагой или щеткой. Луженое изделие паяют легкоплавкими припоями с температурой плавления не более 200°С с применением канифольных флюсов.

Перед нанесением покрытия детали обрабатывают в соответствии с технологией, применяемой в гальванотехнике.

Пайка, без которой не обойтись

Рынок кровельных металлов растет и становится все более разнообразным. Однако информации о том, как работать с пайкой металлов и какие использовать для этого средства просачиваются на рынок крайне скудно. В связи с этим мы попросили раскрыть эту тему технического консультанта компании КМЕ в России Владимира Шеслера, который предложил несколько практических советов для получения совершенного паяного шва, а также ответил на дополнительные вопросы журналиста.

Многообразие пайки

Какие кровельные материалы подлежат пайке?

Паять можно оцинкованный металл, нержавеющий металл, свинец, медь, титан-цинк. Говорится много о том, что можно паять алюминий (имеется в виду низкотемпературная пайка без применения инертных газов; на выставке в Германии, еще в 2000 г. видел выставочный образец), но в практике – на объекте – пока никто не паяет. Алюминий проще и легче проклеить.

Львиная доля пайки кровельных материалов приходится все-таки на медь и титан-цинк. В связи с появлением на рынке новых видов поверхностей меди и титан-цинка у кровельщиков по металлу часто возникают вопросы из-за неопределенности, связанные с тем, как, каким припоем, какой кислотой (флюсом) можно правильно паять тот или иной материал.

На сегодня самой распространенной технологией соединения для кровельщиков по металлу является фальцевая техника.

Она выступает, в зависимости от варианта выполнения, как безопасная при дожде, или даже как непроницаемая при дожде. Но фальцевое соединение не является водонепроницаемым. Водонепроницаемое соединение обеспечивает защиту от воды под давлением. Небольшое давление воды всегда существует, например – на плоско-наклоненных кровлях при дожде, в разжелобках, кровельных желобах и водосточных трубах.

По существующим с 2009 г. правилам Немецкого союза кровельщиков по металлу водонепроницаемыми обязаны выполнять следующие соединения:

    При установке водосточных желобов при наклоне кровли 0 С. Так, перепад температур от +20 до +35°С приводит к увеличению давления на 103 бара, что неминуемо вызовет раздутие, а затем и разрыв баллона, материал которого имеет сопротивление разрыву всего 38–40 кгс/см 2 (то есть примерно рассчитан на 2,5-кратный запас по сравнению с рабочим давлением, не превышающим 15,7 бар).

Поэтому баллоны заполняются не полностью, а с оставлением некоторого объема для паров сжиженных газов. При наличии такой воздушной подушки (паровая фаза) расширение сжиженных газов (жидкая фаза) не вызовет опасных для стен баллона напряжений, а приведет только к уменьшению объема (сжатию) этой подушки. Степень заполнения баллонов зависит от плотности сжиженного газа и разности его температур во время заполнения и при последующем использовании (хранении). Существующие правила безопасности определяют предельное заполнение баллона в зависимости от разности указанных температур в пределах 80–90% от его емкости. При пайке газовой горелкой перед началом работы необходимо проверить герметичность шлангов и аппаратуры. Баллоны с газом должны храниться в вертикальном положении. Необходимо принимать тщательные меры предосторожности при использовании низкотемпературного медного припоя, содержащего кадмий, в связи с отравляющим воздействием паров кадмия. При пайке необходимо обеспечить соответствующую вентиляцию, так как может появиться вредный для здоровья дым фтористых соединений из флюса, в котором используется фтор.

Чтобы избежать вреда, рекомендуется проводить все работы в хорошо проветриваемом помещении или на улице, убедиться в том, что данная продукция произведена в соответствии с действующими нормами, установленными в отношении токсичных веществ, внимательно изучить описание свойств, которое имеется на этикетке.

ПАЙКА ТИТАНА И ЕГО СПЛАВОВ

Титан и сплавы на его основе обладают высокой активностью к взаимодействию с большинством газов (кислородом, азотом, водородом) и почти со всеми элемен­тами, входящими в состав припоев. Последствием такого взаимодействия является снижение пластических свойств металла и образование на границе припой—титан интерметаллических соединений, охрупчивающих спай.

В связи с высокой активностью титана смачивание его припоями при темпе­ратурах выше 750—800° С обычно не вызывает трудностей. При температурах выше 750—800° С происходит растворение кислорода в титане и своеобразная
самоочистка поверхности. Эти процессы возможны при нагреве в среде нейтраль­ных газов аргона, гелия высокой чистоты или в вакууме.

Одним из способов уменьшения влияния примесей кислорода в нейтральной газовой среде и в вакууме является применение негерметичных защитных экранов (рис. 3), ограничивающих объем газовой среды, способной взаимодействовать с поверхностью детали. При применении защитных экранов кислород в объеме экрана быстро исчерпывается и в процессе дальнейшего нагрева происходит очи­стка поверхности титана. Такой же механизм очистки поверхности наблюдается и в нахлестке соединений. В связи с этим при печном относительно длительном на­греве затекание припоя в зазор и его заполнение происходит достаточно активно, однако поверхности деталей после пайки оказываются темными. При применении за­щитных экранов поверхность деталей после пайки не темнеет и имеет цвет металла в исходном состоянии.

Пайку титана и его сплавов можно про­водить при температурах до 1000е С; при более высоких температурах наблюдается заметный рост зерна основного металла, снижение его прочностных свойств и умень­шение угла изгиба а.

Читать еще:  Как правильно паять паяльником

1 — герметичный контейнер; 2 —* защитный экран; 3 — паяемый об­разец; 4 — припой

В табл. 8 приведены механические свой­ства сплава ОТ4 толщиной 1 мм после нагре­ва по режимам пайки и механические свой­ства этого сплава после лужения припоями ПСр 72 и ПСр 85—15 при различных гем — пера турах. Механические свойства сплава ОТ4 при нагреве до температур пайки и по­следующем контакте с припоем заметно сни­жаются. Сказанное позволяет считать, что

основные трудности пайки титана и его сплавов заключаются в защите поверх ности деталей от взаимодействия с газами и предотвращении образования иш терметаллических соединений на границе припой—титан.

В настоящее время наметились определенные направления в решении проб лемы пайки титана.

1. Пайка по барьерным или защитным покрытиям, исключающим взаимодей­ствие титана с припоем.

2. Диффузионная пайка, основанная на использовании тонких покрытий из металлов (например, меди и никеля), образующих в контакте с титаном легкоплав-

8, Изменение механических свойств сплава ОТ4, нагретого по режимам пайки без припоев и с припоями

шческие СВ кге/мм2

* Толщина покрытия 10—15 мкм.

кие эвтектики с последующим рассасыванием их в процессе выдержки при повы­шенных температурах.

3. Применение порошковых припоев на основе гитана с добавками меди, никеля, циркония с ограничением количества жидкой фазы из элементов, раство­ряющихся в титановой основе припоя.

4. Применение серебряных припоев с ограниченным содержанием меди.

В качестве барьерных покрытий при пайке титана используют медные, нике­левые, хромо-никелевые, кобальто-никелевые покрытия.

Пайка по медным и никелевым покрытиям позволяет получить хорошие результаты при ограниченной температуре нагрева под пайку, не превосходящей температуры образования эвтектики в системах Ті—Си, Ті—Ni.

Так, при пайке сплава ОТ4 по медному покрытию припоем ПСрМО 68-27-5 максимальная прочность получена при температурах пайки 790—810° С; при более высоких температурах начинается растворение медного покрытия в титане и прочность соединения снижается [1].

Применение хромоникелевого и кобальто-никелевого покрытий снимает ограничения по температуре, однако прочность соединений определяется проч­ностью на границе припой—покрытие и зависит от качества нанесения покрытии и прочности его сцепления с поверхностью титана.

Диффузионная пайка титана по тонким слоям металлов, нанесенных гальва­ническим способом или термовакуумным напылением, обеспечивает получение высоких прочностных свойств паяных соединений (тср = 40-ь-60 кгс/мм2) [4].

Режимы диффузионной пайки для различных покрытий приведены в табл. 9.

При пайке титана порошковыми припоями системы Ті—Си—Ni—Zr, основу которых составляет титан, получены высокие значения прочности (тср = 40-f — — І-50 кгс/мм2).

В припоях содержится, как правило, до 40—50% титана и циркония, а также медь и никель, образующие легкоплавкие эвтектики с титаном и цирконием. При гаком составе припоев сохраняется температура пайки в интервале 950—

В промышленности нашел применение припой ВПр 16, позволяющий вести пайку при температурах 920—960° С. Прочность соединений, паяных припоем ВПр 16, возрастает с увеличением времени выдержки при температуре пайки.

В соединениях, паянных серебряными припоями, прочностные свойства определяются характером взаимодействия титана с компонентами, входящими в состав припоев, таких, как медь, никель, серебро, цинк и др. [11].

Сопротивление срезу соединений, паянных серебряными припоями, 10— 23 кгс/мм2, а предел выносливости о_х на базе 107 циклов 8—20 кгс/мм2.

Охрупчивание титана под действием расплавленных серебряных припоев и получение низких прочностных свойств обусловлено образованием интерметал­лических соединений типа Ti2Cu, TiAg, Ti2Ni и др. Из многих серебряных припоев

наибольшую прочность при пайке можно получить, применяя серебряные припои с ограниченным содержанием меди.

Припои, содержащие до 28% Си, такие как ПСр 72, ПСр 62, ПСрМО 68-27-5 образуют на границе титан—припой нитерметаллические соединения с концен­трацией меди до 35—40%, что приводит к снижению прочностных свойств паяных соединений. Для сплавов ОТ4-1 и ВТ20 получены тСр = 10—15 кгс/мм2, a_j = = 8-f-lO кгс/мм2.

При пайке припоем ПСр 92 концентрация меди на границе титан—припой остается на уровне 8—10%, что позволяет получить более высокие прочностные свойства паяных соединений (тср = 18-г-22 кгс/мм2, a_j = 15-М8 кгс/мм2).

Результаты измерения твердости и распределения химических элементов по сечению паяных соединений для припоев ПСр 72 и ПСр 92 приведены на рис. 4. Эти же данные подтверждаются японскими учеными, которые считают, что содер­жание меди в серебряных припоях для пайки сплавов титана не должно пре­вышать 10%, а в случаях превышения указанного содержания меди в припое в состав припоя целесообразно вводить никель, образующий с медью твердый раствор и тем самым снижающий концентрацию меди на границе припой—титан.

Пайка титана низкотемпературными припоями затруднена из-за окисной пленки, находящейся на его поверхности. В связи с этим пайку указанными припоями можно проводить в безокислительной среде при температурах выше 750е С или на воздухе по покрытиям при более низких температурах. В качестве покрытий наибольшее распространение получили: никель, наносимый галь­ваническим и химическим способами, и медь, наносимая гальваническим спосо­бом. Возможно горячее лужение титана оловом в ваннах при температурах выше 700—750е С и процесс пайки оловом в вакууме или аргоне при тех же темпера­турах.

Пайка специфических материалов

  • Припои Brazetec
  • Новости
  • Статьи
  • Вопрос ответ

Философы считают, что цивилизации двигает вперед мечта. В желаниях ее воплощения рождаются идеи, для их воплощения придумывается нечто новое и рождается невероятное. Иногда такой творческий процесс созидания упирается в старую, как мир, проблему — совместить несовместимое. Применительно к высокотемпературной пайке сверхтвёрдых материалов, эта парадоксальность возникает при осмыслении условий, которые надо соблюсти, чтобы изготовить твердосплавный или композитный инструмент, и чтобы он решал поставленные задачи, был приемлемо долговечен и допустимо дорог. Например, чем и главное, как можно припаять к металлу алмаз, чтобы сохранить свойства последнего, если для реализации технологии нужны тысячеградусные температуры? Оказывается, что можно. И не только алмаз, и не только к металлу.

Пайка алмазов

В некоторых промышленных производствах используют режуще-абразивный инструмент сложных форм. Это и камнеобработка, где с помощью фасонных роликовых фрез изготавливают элементы лестниц, столешниц, карнизов; это машиностроение, для которого предназначены корундовые абразивные круги, чьи сложные профили получаются прокаткой алмазными фасонными роликами. Если говорить точно, в производстве инструмента, который именуют алмазным, используется алмазный порошок. Он состоит из синтетически выращенных кристаллы твёрдофазного углерода с размером в 400-600 микрон. Преимущество искусственного алмаза не только в относительной дешевизне, но и в одинаковости условий его рождения, чего не бывает в природе, что даёт однообразие характеристик кристаллов.

Этот порошок надо соединить с металлическим телом инструмента, а сам по себе камень к нему не закрепится. Соединяющим звеном выступает металлическая же связка, образующая на режущей поверхности алмазосодержащий слой. Характеристики такого слоя достаточно противоречивы и должны обеспечивать в достаточной мере и одновременно:

  • прочность, позволяющую долговременно сопротивляться, не разрушаясь, нагрузкам;
  • термостойкость, выдерживающую температуры резания;
  • пластичность, чтобы истираясь, давать возможность алмазам вступать в соприкосновение с обрабатываемым материалом.

Широко применяемой технологий создания таких фасонных алмазных инструментов является пайка твёрдыми припоями в среде вакуума. Припоем в этом процессе служат сплавы, содержащие марганец, хром, кремний, титан, алюминий. Чтобы обеспечить полное покрытие сложных форм инструмента, припой наносится или в виде аморфного листа, либо суспензии. И так как перечисленные выше элементы относятся к классу карбидообразующих, то происходит химическое взаимодействие расплава припоя с гранулами алмазных кристаллов с одной стороны, и надежная адгезия к телу инструмента с другой. Пайка происходит при температуре порядка 1100°С, и если бы не вакуум, была бы невозможна, т.к. алмаз начинает гореть в присутствии кислорода воздуха в диапазоне 850÷1000°С. Невысокая вязкость твёрдых припоев с использованием Mn, Cr, Si, Ti и Al, затрудняющая создание многослойных покрытий сложных форм, нивелируется применением композиционных составов, содержащих тугоплавкий наполнитель, легкоплавную матрицу и органическое связующее. Примером этого вида припоев назовём смесь порошков химически чистых меди, олова и кобальта с размером частицы от 2 до 70 мкм, приведенных в пастообразное состояние добавлением 5% водного раствора поливинилового спирта.
В геологии, нефтедобыче, строительстве для бурения твёрдых пород используют алмазные коронки для буров. Их «алмазность» состоит в том, что в качестве режущих элементов на них применяются сегменты, получаемые путем холодного прессования шихты из кристаллов алмаза и связующего материала — кобальта. Одним из способов закрепления на бурах этих сегментов также является пайка, производимая с применением флюса, например подходят типы «h» бренда BrazeTec и припоев на основе серебра, таких как BrazeTec 4900, BrazeTec 4900A, также содержащих медь, марганец, цинк и никель в качестве твердосплавной составляющей.

Пайка керамических изделий

Керамика, родившаяся как рукотворная замена природного камня, в начале своего пути, пока она была материалом для красивой посуды и строительных изделий, в пайке не нуждалась. Позже, эволюционировав в сферу высоких технологий благодаря уникальному набору свойств некоторых своих разновидностей, таких как высокая электросопротивляемость, прочность при температурах выше 500°С, стойкость к быстрым колебаниям температур, встал вопрос о соединении изделий из неё с металлами. Пайка керамики и металлов нашла применение в высокоточном приборостроении, в радиоэлектронной промышленности. Основных способов её производства четыре:

  • послойная металлизация керамики с последующим спеканием слоёв;
  • пайка стеклоприпоем;
  • активная пайка;
  • пайка под давлением.

Патент на один из вариантов первого способа был выдан во Франции, в последней четверти прошлого века. Надежность результата соответствует многоступенчатости сложного процесса. Из порошкообразных молибдена или вольфрама с добавлением марганца, гидрида титана, борида молибдена, ферросилиция приготавливают пасты. Нанесенный слой впекают в керамику при температурах 1250-1650°С, дублируя процесс. Повторная металлизация производится гальванизацией никелем, тоже в два этапа, химическим и электролитическим путем. Пайку таким образом подготовленной керамики производят медно-серебрянными припоями.
Пайка стеклоприпоями — самый старый метод соединения керамики с металлами. Припои, применяемые здесь, с течением времени усложнялись, эволюционировав от промышленных марок стекла и глазурей до специальных составов, состоящих из сложных композиций, содержащих оксиды кремния, бария, натрия, калия, лития, цинка и алюминия.

Теперь стеклоприпой является высокотехнологичным материалом, приготовленным по керамической технологии, когда шихту, содержащую компоненты состава сваривают, измельчают в тонкодисперсную массу, гранулируют и измельчают повторно, и путем обработки под давлением придают форму, пригодную для конкретного техпроцесса пайки, которая производится при температурах 1300-1360°С.

Активная, или прямая пайка осуществляется при использовании в качестве припоя титана, циркония и гафния, имеющих способность смачивать непосредственно керамику, что исключает трудоемкую и технологически сложную предварительную металлизацию. Процесс производят в вакууме или инертной среде. В этих условиях при высокой температуре происходит частичное восстановления окисла, из которого состоит керамика, и образуется сложный твёрдый восстановительно-замещающий взаимный раствор металла припоя и металла керамики, образующий паяльный шов.

Пайка керамики под давлением также исключает металлизацию. В качестве припоя применяют медно-германиевые припои с добавлением марганца. Детали собираются в узел, нагреваются до температуры плавления припоя, выдерживаются без давления некоторое время для обеспечения возможности припою растечься. Затем подвергаются давлению в 4-5 МПа и после выдержки при этой температуре, не снимая давления, охлаждаются.

Пайка вольфрама

Вольфрам со своими выдающимися физическими свойствами занимает в ряду технологических металлов особое положение. Плотность как у золота, температура плавления в 3422°С, самая высокая из экспериментально доказанных среди металлов, немагнитность, электропроводность и высокая твёрдость определяют его область применения от бытовых до космических. Нить накаливания осветительной лампы и гироскоп баллистической ракеты содержат вольфрам. При этом, вольфрам хрупок при нормальных условия, сильноокисляем и сверхпластичен при нагревании.

Совокупность плюсов и минусов этих характеристик и образует сложность процессов пайки вольфрама. Очистку окислов перед пайкой производят травлением в кислой среде из равносоставной смеси фтористоводородной и азотной кислот, в щелочной среде едкого натра. Затем заготовку промывают в спирте, горячей воде до нейтральной реакции на поверхности. Промышленная пайка вольфрама производится в вакууме, либо в защитно-восстановительной среде, исключающей повторное окисление. Чтобы улучшить смачивание зоны пайки, иногда требуется промежуточная операция нанесения нано-слоёв меди, никеля, производимая методом гальванизации. Для минимизации эффектов, вызываемых свойством рекристаллизации вольфрама в границе температур 1600°С, техпроцесс пайки должен обеспечивать быструю скорость нагревание материала и короткую выдержку при достижении расплава припоя. В качестве последних при пайке вольфрама применяются чистые металлы с высокими, до 1000-3000°С, температурами плавления, такие как медь, никель, ниобий, тантал. Применяются в качестве припоев также разнопропорциональные сплавы этих металлов в различных комбинациях, с добавлением активной составляющей марганца, хрома и железа. В среде аргона вольфрам паяется серебряными, железно-марганцевыми и медно-никелевыми припоями стандартных марок.

Пайка никеля

Типичному представителю ряда переходных металлов, никелю, в полной мере принадлежат свойства, характеризующие этот ряд: ковкость, тягучесть и при этом высокий предел прочности на разрыв. С точки зрения химии, никель обладает великолепной способностью противостоять окислению. Такой набор позволяет найти серебристому металлу применение и в производстве нержавеющих сплавов, в электротехнической промышленности, в ювелирном деле, ракетостроении, химпроизводстве. До 84% производимого в мире никеля расходуется на изготовление сплавов, его содержащих. Широкий диапазон применения этих сплавов подразумевает и разнообразные методы получения конечного продукта из них, и конечно, не обходится и без пайки.

В зависимости от компонентов никельсодержащих сплавов, на их поверхности образовываются оксидные пленки разной степени стойкости. Эти преграды для пайки без затруднений удаляются флюсованием или при нагреве у сплавов электрохимического назначения, и требуют включения в техпроцесс специальных операций по осушке, применения восстановительных газовых сред или дополнительного металлизирования с применением вакуумных сред у жаростойких и сверхжаростойких сплавов.

Если к соединению, состоящему из деталей из никеля и его сплавов предъявляются не очень высокие требования по температурным режимам работы, то применяются припои на основе серебра, содержащие его от 61 до 85%, а помимо — медь и цинк для достижения температуры плавления 730°С, или марганец для её повышения до 980°С. Более высокие значения, превышающие 1100°С, обеспечивают припои комплексных составов никель-марганец-хром, или их вариации с добавлением серебра и палладия, в последнем случае пайка производится помимо вакуума, ещё и в аргоновых средах. При пайке некоторые из компонентов припоя проявляют склонность к растворению в никеле в зоне пайки, поэтому на передний план проведения операции выдвигается требование по неукоснительному и точному соблюдению тепловых и временных режимов технологии.

Пайка титана

Еще у одного окруженного ореолом элитности цветного металла, титана, необычные свойства и судьба. Открытый в принципе еще в конце 1700-ых годов, он впервые был получен в чистом металлическом виде в 1825 году, а промышленное его производство состоялось только в 40-ых годах ХХ века. Как обычно тогда бывало, потребности промышленности в металле, которые вдвое легче стали и сопоставим с ней по прочности, подтолкнули науку. Люксембургским металловедом Г. Кроллом был изобретен метод получения титана восстановлением из его тетрахлорда, который и поныне даёт большую часть мирового производства. Прочность титана востребована в ракето- и авиастроении, военной промышленности. Химическая инертность сделал его незаменимым при изготовлении арматуры, аппаратов, ёмкостей и машин для агрессивных сред в химических производствах, из него делают протезы человеческих органов.

Титан и его сплавы тоже поддаётся пайке, и в общем случае технология включает в себя все этапы, рассматриваемые выше. На подготовительной стадии с соединяемых деталей удаляется т.н. альфированный слой, это хрупкий, насыщенный атмосферным кислородом слой материала. В зависимости от его толщины, достаточно может быть или пескоструйной обработки, или, в сложных случаях, травление в смеси азотной и соляной кислот. Но даже эти методы полностью не удаляют оксидные пленки. Поэтому мало того, что неизбежно применение флюсов на основе ортофосфорной и ацетилсалициловой кислот, натриевой соли борной кислоты, ещё и потребуется создание вакуумной или инертной аргоновой среды. Пайка ведётся при температурах в районе 900°С, позволяющей уберечься от структурных изменений, которым подвержен титан при более высоком нагревании. Отсюда и номенклатура припоев, обеспечивающих достаточную прочность соединению, ещё и с учетом склонности титана создавать со своими припоями интерметаллиды — химическое соединение металл-металл. Серебро, алюминий — наиболее распространённая припои, которыми производят пайку титана. Также, в порядке снижения предпочтения, используются никель- и медьсодержащие припои. Для снижения образования интерметаллидов в зоне пайки, припои легируются малопроцентными добавками железа, марганца, магния, никеля, кремния и др. Пайка титана в условиях промышленного производства происходит как в вакуумных печах, так и на ТВЧ-установках.

Читать еще:  Технологический процесс пайки металлов

Глядя на разнообразие материалов и технологий современной пайки, может сложится впечатление, что никакое экзотическое ограничение, созданное каким-либо свойством какого-то конкретного вещества, не является препятствием современному материаловедению. Будь то высокие температуры, специфические на них реакции, физические трансформации или химически-неизбежные процессы — для всего есть уже готовое решение. Это, конечно, совсем не так. И по-прежнему идея, стремление соединить несоединимое, подкреплённое всё большими потребностями производства в чистоте, точности, стабильности соединений конструкционных материалов, расширение линейки этих самых материалов далеко в стороны от традиционных металлов, всё это заставляет крупнейших производителей затрачивать до 20% собственных прибылей как на прикладные исследования, так и на фундаментальную науку, открывающие новые горизонты и новые возможности в совершенствовании методов, способов и качества получения современной промышленной и бытовой продукции.

Классификация припоев для пайки, технические характеристики и рекомендации по выбору

При выборе припоя нужно руководствоваться следующими принципами:

1) температура плавления паяемых деталей должна быть выше, чем температура плавления припоя,

2) должна обеспечиваться хорошая смачиваемость основного материала,

3) значения коэффициентов температурного расширения основного материала и припоя также должны быть близки,

4) наименьшая токсичность припоя,

5) припой не должен ухудшать механические свойства основного материала и образовывать с ним гальваническую пару, приводящую к интенсивной коррозии в процессе эксплуатации,

6) свойства припоя должны соответствовать технико-эксплуатационным требованиям, предъявляемым к конструкции в целом (прочность, электропроводность, коррозионностойкость, хладостойкость и др.),

7) припои с ограниченным интервалом кристаллизации требовательны к качеству подготовки поверхностей к пайке и обеспечению точного капиллярного зазора, при больших зазорах лучше применять композиционные припои,

8) для проведения вакуумной пайки и пайки в среде защитных газов наиболее подходящими являются самофлюсующиеся припои, без содержания цинка и других металлов с высокой упругостью паров,

9) для пайки неметаллических деталей используют припои с добавками элементов, обладающих наибольшим химическим сродством (для керамики и стекла — с цирконием, гафнием, индием, титаном).

Припои классифицируют по нескольким признакам:

1. По температуре плавления:

а) низкотемпературные (Тпл до 450 град., на основе галлия, индия, олова, висмута, цинка, свинца и кадмия): особолегкоплавкие (Тпл до 145 градусов), легкоплавкие (Тпл=145. 450 град.);

б) высокотемпературные (Тпл более 450 град., на основе меди, алюминия, никеля, серебра, железа, кобальта, титана): среднеплавкие (Тпл=450. 1100 град.), высокоплавкие (Тпл=1100. 1850 град.), тугоплавкие (Тпл более 1850 град.).

2. По типу расплавления: полностью и не полностью расплавляемые (композиционные, из твердого наполнителя и легкоплавкой части).

3. По способу получения припоя — готовые и образуемые в процессе пайки (контактно-реактивная пайка). При контактно-реактивной пайке припой получается в результате расплавления основного металла, прокладок (фольги), покрытий или вытеснения металла из флюса.

4. По основному химическому элементу в составе припоя (содержание более 50%): индиевые, галлиевые, оловянные, магниевые, цинковые, алюминиевые, медные, серебряные, золотые, никелевые, кобальтовые, железные, марганцевые, палладиевые, титановые, ниобиевые, циркониевые, ванадиевые, смешанные припои из двух элементов.

5. По способу образования флюса: флюсуемые и самофлюсующие, содержащие литий, бор, калий, кремний, натрий. Флюс служит для удаления окислов и защиты кромок от окисления.

6. По технологии изготовления припоя: прессованные, тянутые, штампованные, катанные, литые, спеченные, аморфные, измельченные.

7. По виду припоя: прутковые, проволочные, трубчатые, ленточные, листовые, композитные, порошковые, пастообразные, таблетированные, в виде закладных деталей.

Среди низкотемпературных припоев наибольшее распространение получили оловянно-свинцовые припои (Тпл=183 град. при содержании олова 60%). Содержание олова может колебаться в пределах 30. 60%, Тпл=145. 400 град., при большем содержании этого элемента температура плавления снижается, увеличивается жидкотекучесть сплавов.

Так как сплав олова и свинца склонен к рассыпанию и плохо взаимодействует с металлами при пайке, то в состав этих припоев вводят легирующие добавки цинка, алюминия, серебра, кадмия, сурьмы, меди.

Соединения кадмия улучшают свойства припоев, однако обладают повышенной токсичностью. Припои с повышенным содержанием цинка применяют для пайки цветных металлов — меди, алюминия, латуни и цинковых сплавов. Оловянные припои обладают теплостойкостью до температуры около 100 град., свинцовые — до 200 град. Свинец также быстро корродирует в условиях тропического климата.

Наиболее легкоплавкими припоями являются составы, содержащие галлий (Тпл=29 град.). Оловянно-галиевый припой имеет Тпл=20 град.

Висмутовые припои имеют Тпл=46. 167 град. Такие припои при затвердевании увеличивают свой объем.

Температура плавления индия — 155 град. Индиевые припои используют при пайке материалов с разными температурными коэффициентами расширения (например, коррозионно-стойкая сталь с кварцевым стеклом), так как он имеет свойство высокой пластичности. Индий обладает стойкостью к окислению, коррозионной стойкостью к щелочам, хорошей электро- и теплопроводностью и смачиваемостью.

Среди высокотемпературных припоев наиболее легкоплавкими являются составы на основе меди . Медные припои находят применение при пайке стали и чугуна, никеля и его сплавов, а также при вакуумной пайке. Медно-фосфорные припои (содержание фосфора до 7%) применяют для пайки меди как альтернатива серебряным припоям.

Более высокой пластичностью обладают медные припои с добавками серебра и марганца . С целью повышения механических свойств вводят также добавки никеля, цинка, кобальта, железа, щелочных металлов, бора и кремния.

Медно-цинковые припои более тугоплавки (Тпл более 900 град. при количестве цинка до 39%), применяются для пайки углеродистых сталей и разнородных материалов. Потери цинка в виде испарений изменяют свойства припоя и вредны для здоровья, как и пары кадмия. Для снижения этого эффекта в припой вводят кремний.

Медно-никелевые припои подходят для пайки деталей из коррозионно-стойких сталей. Никелевая составляющая повышает Тпл. Для ее снижения в припой вводят кремний, бор, марганец.

Серебряные припои изготавливают в виде системы «медь-серебро» (Тпл=600. 860 град.). Серебряные припои содержат в своем составе добавки, снижающие Тпл (олово, кадмий, цинк), и повышающие прочность соединения (марганец и никель). Серебряные припои являются универсальными и применяются для пайки металлов и неметаллов.

При пайке жаропрочных сталей применяют никелевые припои системы «никель-марганец» . Помимо марганца такие припои содержат и другие добавки, повышающие жаропрочность: цирконий, ниобий, гафний, вольфрам, кобальт, ванадий, кремний и бор.

Пайку алюминия производят алюминиевыми припоями с добавлением меди, цинка, серебра и кремния , снижающих Тпл. Последний элемент образует с алюминием наиболее коррозионно-стойкую систему.

Пайку тугоплавких металлов (молибден, ниобий, тантал, ванадий) осуществляют чистыми или композиционными припоями с высокой Тпл на основе циркония, титана и ванадия . Пайку вольфрама производят сложными припоями систем «титан-ванадий-ниобий», «титан-цирконий-ниобий» и другими.

Свойства припоев и их химсостав указаны в таблицах 1-6.

ТОП (нов) / Пайка-титан

ТИТАН И ЕГО СПЛАВЫ

Титан и конструкционные сплавы на его основе нашли широкое применение в ряде отраслей промышленности благодаря своим уникальным физико-химическим свойствам, в частности, высокой удельной прочности, превосходящей сталь, алюминий и магниевые сплавы, высокой коррозионной стойкости.

Основной отличительной особенностью титана является его способность поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практического использования. Наиболее активно идет взаимодействие с водородом – при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре. С кислородом воздуха заметно взаимодействует при температуре выше 500. 600°С с образованием оксида TiO2, называемого рутилом. С азотом титан реагирует при температуре выше 700°С, при этом образуются нитриды типа TiN в виде тонкого порошка или проволоки.

Особенности пайки титана

Паяемость титана и его сплавов определяется его высоким химическим сродством к другим элементам, в том числе кислороду, азоту, водороду. Это обусловливает, в частности, высокую химическую и термическую стойкость его оксидов. Взаимодействие с компонентами атмосферы приводит к образованию на поверхности титана хрупкого слоя твердого раствора кислорода и азота в титане (альфированный слой). Этот слой перед пайкой должен быть тщательно удален с поверхности паяемых деталей механическим или химическим способом (травлением, как правило, в растворах кислот).

Образование оксидов на очищенной поверхности титана при температуре 20˚С происходит сравнительно медленно, и пайка может быть проведена в течении первых суток после травления. При нагреве, особенно до температур выше 650-700˚С, скорость роста оксидной пленки резко возрастает.

Механизм окисления титана при нагреве в газовых средах можно представить как результат действия гетерогенных процессов: на границе «оксид-газ» происходит адсорбция кислорода, его ионизация и образование оксида, а также частичная диффузия атомов кислорода в глубину оксидной фазы; на границе «оксид-металл» осуществляется переход атомов кислорода из оксида в металлическую фазу с образованием твердого раствора внедрения и атомов титана в оксидную фазу. Движущей силой этих процессов является разность концентраций компонентов на границе раздела взаимодействующих фаз – С.

Рис.…. Модель окисления, охватывающая растворение кислорода в металле и образование оксидной пленки: y – толщина оксидной пленки, h – глубина газонасыщенного слоя,  — глубина охрупченного слоя.

Из схемы окисления следует, что изменение толщины оксидной пленки на поверхности титана в общем случае можно представить как разность скоростей процессов образования оксидной пленки (VО) и ее утонения (VР) за счет растворения кислорода в титане

,

где y – толщина пленки оксида,  — время.

Следовательно, при пайке можно создать условия, при которых рост оксидной пленки сменится ее растворением. На возможность реализации процесса пайки существенное влияние оказывают как парциальное давление кислорода, так и температура нагрева. Однако, повышение температуры приводит к увеличению скорости взаимодействия кислорода с титаном. При этом кислород, растворяясь в титане приводит к увеличению толщины альфированного слоя на его поверхности, что особенно актуально для деталей малой толщины, поскольку в этом случае толщина альфированного слоя соизмерима с толщиной самой детали. В этом случае, после длительного нагрева, даже в условиях вакуума, возможно существенное охрупчивание материала, вплоть до полной потери работоспособности.

Кроме того, нагрев и выдержка при повышенных температурах, при которых происходит активное растворение кислорода в титане, приводит к значительному увеличению скорости роста его зерна, что снижает механические характеристики титана и его сплавов, а также приводит к интенсификации процессов образования и роста интерметаллидных прослоек.

Образование оксидной пленки на поверхности паяемого изделия и рост толщины альфированного слоя при пайке могут быть предотвращены, если изделие нагревать в атмосфере с низким парциальным давлением кислорода, например, чистом проточном аргоне или вакууме. Несмотря на то, что оксид титана TiO2 не восстанавливается в вакууме с остаточным давлением более 1,33∙10 -3 …1,33∙10 -5 Па, относительно большая растворимость кислорода в α-титане (до 20%) и низкое парциальное давление кислорода оказываются достаточными для предотвращения образования оксида на предварительно очищенной поверхности титана при нагреве, и способствуют очистке поверхности от оксида за счет его растворения в основном металле.

Традиционно титан и его сплавы паяют при температуре выше 700–860˚С, те есть выше температуры перехода α-титна в β-титан, в котором особенно высока растворимость кислорода. При этой температуре, при нагреве в среде с низким парциальным давлением окислительных компонентов, скорость образования оксидной пленки значительно меньше скорости ее восстановления за счет растворения кислорода в титане, что способствует «самоочищению» поверхности нагреваемых деталей.

Припои

При выборе припоя, способов и режима пайки необходимо иметь в виду, что в паяном шве титан образует хрупкие интерметаллиды почти со всеми элементами, входящими в припой. Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, менее хрупкие, чем с другими металлами.

Для пайки титановых сплавов в вакууме и инертных газах применяют также серебряные припои, легированные палладием и галлием. Температура пайки этими припоями лежит в диапазоне 650…1000˚С. Получаемые при этом паяные соединения имеют высокие механические свойства, однофазны по структуре и бездефектны. Припои обладают низкой эрозионной способностью по отношению к титановым сплавам.

Высокие прочностные характеристики паяных соединений можно получить при высокотемпературной пайке титана припоями на основе никеля или меди (σв≈30 МПа), но эти металлы очень активно взаимодействуют с титаном, растворяют его, вызывая сильную эрозию и охрупчивание в зоне шва.

Наибольшую прочность паяных соединений можно обеспечить при пайке припоями на той же основе, что и основной паяемый металл, а также на основе металлов, образующих с ним неограниченные твердые растворы. Такой основой припоев при пайке титана могут быть цирконий и ванадий, образующие с титаном непрерывные твердые растворы с минимумом на диаграмме состояния. Важнейшими депрессантами титановых припоев кроме меди, никеля являются кобальт, кремний, германий, бериллий.

Наиболее часто применяемым припоем на основе титана является припой ВПр 16, содержащий 8…18% Ni, 11…14% Zr, 21…24% Сг, Ti – остальное. Известны также, разработанные в МИФИ-АМЕТО аморфные ленточные припои на основе титана СТИМЕТ 1201 аналогичного состава, и на основе циркония СТИМЕТ 1403 (9…11% Ti, 9…11% Ni+Cu+Fe+Be+Al+Ge, Тпл=680С). Применение аморфных припоев позволяет увеличить механические свойства паяных соединений на 10-40%, повысить пластичность в 1,5-1,8 раза, снизить массу паяных узлов.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают слоем никеля, олова, серебра или меди. После этого пайку производят соответствующими припоями и флюсами.

Достаточно часто в качестве припоев для капиллярной пайки титана используют сплавы на основе алюминия. Этот металл образует с титаном двойную диаграмму состояния с химическими соединениями. Однако скорость роста интерметаллида TiAl3, образующегося по границе с паяемым металлом при температурах пайки, относительно невелика, что обусловлено сравнительно высокой его энергией активации, равной 154 Дж/моль. Соединения, паяные алюминиевыми припоями, имеют высокую коррозионную стойкость, а также достаточно высокую прочность. Эти припои также применяются и для пайки алюминиевых сплавов, поэтому их следует считать наиболее перспективными для пайки комбинированных конструкций из титана и алюминия.

Способы пайки титана

Пайка титана легкоплавкими припоями возможна только после предварительного лужения паяемой поверхности погружением в расплавленный припой при температурах, при которых тонкий слой пленки TiO2 может быть восстановлен вследствие растворения кислорода в титане при температуре 800-900С. После удаления оксидных пленок и нагрева в инертной среде смачивание титана выбранными припоями хорошее.

Перед пайкой титана с алюминием или алюминиевыми сплавами применяют предварительное алитирование титана в жидком алюминии.

Также нашли применение при пайке титана и флюсовые способы, причем флюсы, применяемые при пайке сплавов на других основах, не пригодны для пайки титана. Рекомендуемые в литературе флюсы для пайки титана и его сплавов содержат главным образом хлориды и фториды металлов и рекомендованы для пайки в пламени кислородно-ацетиленовых горелок и в печах. При газопламенной пайке с флюсами не удается добиться хорошего смачивания поверхности титана припоями и обеспечить стабильные механические характеристики паяных соединений. Лужение с помощью реактивных флюсов основано на способности титана восстанавливать металлы из их расплавленных солей. Процесс идет по следующим уравнениям:

При этом хлорид титана TiCl4 в виде газа улетучивается с поверхности металла, разрушая при этом оксидную пленку TiO2, а восстановленные олово и серебро покрывают чистую поверхность облуживаемого металла. После окончания реакции и охлаждения деталей остатки флюса должны быть немедленно и тщательно смыты, а детали просушены. Очищенную поверхность титана и его сплавов, покрытую оловом или серебром, подвергают пайке обычными способами.

Читать еще:  Производство, услуги и исследования

Опыты по ультразвуковой пайке титана не дали положительных результатов. Например, после ультразвукового лужения сплава ОТ4 слои припоев П200А и ПОС61 оказались слабо связанными с основным металлом.

Диффузионная пайка титана применяется при необходимости получить пластичные и прочные соединения. Сущность диффузионной пайки заключается в том, что изделие, паяное минимально необходимым количеством припоя, представляющим собой сплав титана с никелем, медью, железом, кобальтом эвтектического типа, выдерживают при температуре пайки до тех пор, пока в паяном соединении не образуется пластичный твердый раствор. Прочность соединений, полученных таким образом, близка к прочности основного металла. Широкое применение нашла контактно-реактивная диффузионная пайка, при которой припои с большим содержанием титана образуются при контактно-реактивном плавлении паяемого металла с тонкими (порядка десятка микрометров) прослойками деперссантов и тугоплавких металлов.

Наиболее производительным и перспективным способом пайки титана и его сплавов, особенно легированных алюминием, ванадием и молибденом, является печная пайка в вакууме или сухом проточном аргоне с точкой росы ниже –65С с предварительным вакуумированием контейнера. Пайку в вакууме осуществляют при остаточном давлении

10 -4 Па. При этих способах пайки активация поверхности титана обеспечивается путем восстановления оксида на его поверхности за счет растворения кислорода из него в основном металле. Это становиться возможным в том случае, когда скорость образования оксида меньше скорости его восстановления. Достичь этого можно путем снижения парциального давления кислорода в паяльной атмосфере. Время пайки в этом случае существенно зависит от величины парциального давления кислорода. При пайке титана в вакууме должен отсутствовать контакт его с углеродом, так как он имеет высокое химическое сродство с титаном.

Для снижения температуры начала смачивания при вакуумной пайке могут использоваться металлы-активаторы, вводимые в виде паровой фазы или в состав припоя. Так, например, при пайке титана эвтектическим силумином введение паровой фазы свинца позволяет снизить температуру начала смачивании с 670…700°С до 590…600°С.

При пайке в вакууме или инертных газах герметизация контейнера и чистота его внутренней поверхности оказывает большое влияние на качество паяного соединения. От действия кислорода, появляющегося в контейнере, наиболее успешно защищают экраны из коррозионно-стойкой стали или из титана в виде крышек или коробок. Наиболее эффективно в этом случае применение контейнеров с затвором, уплотняемым титановой губкой (геттером). В этом случае удается обеспечить условия нагрева, при которых практически отсутствует газонасыщение титана, даже при нагреве в условиях низкого вакуума (форвакуума).

Таким образом, большинство применяемых способов пайки титана и его сплавов, в том числе и пайка в вакууме, по принципу удаления оксидной пленки основаны на процессах ее растворении в самом титане.

Пайка титановых сплавов

Способность к пайке титана и титановых сплавов зависит от его высокого химического состава. Активность. Благодаря высокой растворимости кислорода и азота в титане при нагревании на воздухе на поверхности образуется альфа-хрупкий слой и образуется стабильный оксид титана.

Водород, который слегка растворяется в альфа-титане, образует гидрид титана в альфаф-сплавах и охрупчивает их. Водород в бета-титане более растворим и ускоряет распад эвтектоидных сплавов a-f-p-титана.

Поскольку для пайки титановых сплавов недостаточно активного флюса, они не спаяны на воздухе и не спаяны в среде водорода и азота из-за охрупчивания водородом и азотом.

Титановые сплавы паяют только после механического удаления оксидных и альфа-слоев с поверхности детали. Пилинг или химические вещества. Травление после пескоструйной обработки водой (например, в растворе состава: 20 мл в течение 4-6 минут, 30 мл HCl, 20 мл HF, 950 см3 H2O)

При пайке серебряными и Ti-Ni припоями детали нагреваются в чистой, сухой, нейтральной газовой среде. В большинстве случаев аргон. P. t.s. Возможно при относительно низком вакууме (1-10 «2-1-10- * мм рт. Ст.).

При пайке титановых сплавов с алюминием и оловом паянную поверхность сначала покрывают оловом в олове, нагретом до 600-650 °, или алюминием, нагретым до 850-900 ° Паяется с флюсом.

Пайка сплава VT1 с оловом и припоем POS40 также возможна с использованием чистого сухого текучего аргона. Когда олово покрыто алюминием, флюс используется для пайки алюминиевых сплавов.

  • Титан образует хрупкие химические вещества с большинством металлов. Поэтому паяные швы менее пластичны и прочнее, а нижняя осн. Материал сильно растворяется в жидком припое.

При нагревании выше 1000 ° С многие титановые сплавы подвержены сильному росту зерна и необратимой механической деградации. св. Более высокая прочность титановых и его сплавных паяных соединений достигается диффузионной пайкой в ​​результате диффузии компонентов припоя (медь, никель, серебро и т. Д.) В основной металл. Это связано с тем, что титан может образовывать широкий спектр твердых растворов с определенными металлами (Ag, Ni, Cu).

Чтобы предотвратить интенсивное растворение титана в жидком припое и образование интерметаллических слоев в паяных соединениях, нагрев деталей во время пайки ограничен по температуре, и в некоторых случаях может потребоваться более короткое нагревание.

Припой должен быть строго введен.

Иногда серебро предварительно осаждается на паяемой поверхности или другие покрытия наносятся для этой цели и для предотвращения окисления титана в воздухе. Никель (химический метод; слой 10-20 мкм). Для улучшения адгезии между никелевым покрытием и основным. Материальные части нагревают при 250 ° С в течение 2-2,5 часов.

При пайке титанового сплава сталью или медным сплавом и при пайке пламенем газовой горелки или высокочастотным током на воздухе абсолютно необходимо нанести промежуточное покрытие на титановый сплав.

  • Пайка титанового сплава. Вакуумная печь или специально запущенная. Из герметичного контейнера, например из нержавеющей стали, предварительно откачали или продули сухим чистым аргоном.

Детали загружаются в электропечь, нагреваемую кварцевым излучателем. Пайка с аргоном более успешна, когда экранирует припаянные части от потока аргона, поступающего в контейнер.

Для предотвращения интенсивного роста зерен титана и его сплавов рабочая температура используемого припоя должна быть ниже 1000 ° (см. Припой из титанового сплава).



Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

f9219603113@gmail.com


Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Пайка титана и его сплавов

Титан — химический элемент IV группы периодической системы — относится к переходным металлам, отличается сравнительно небольшой плотностью (4,5 г/см 3 ), малым температурным коэффициентом линейного расширения и коррозионной стойкостью в морской воде, агрессивных средах и различных климатических условиях. В зависимости от легирования и термообработки временное сопротивление титановых сплавов изменяется от 490 до 1372 МПа. Титан может работать в широком интервале температур от —253 до 500 °С.

Паяемость титана и его сплавов определяется его высоким химическим сродством к другим элементам, в том числе к кислороду, азоту, водороду. Это обусловливает, в частности, высокую химическую и термическую стойкость его оксидов.

Титан обладает полиморфизмом. При температуре ниже 882 °С он находится в а-состоянии (гексагональная решетка), а выше— в в-состоянии (кубическая решетка). Это обстоятельство существенно влияет на паяемость титана, возможность удаления его оксидной пленки и диффузию депрессантов из шва в паяемый металл. Элементы, образующие твердые растворы внедрения, относятся к вредным примесям (С, N, О, Н), охрупчивающим титан; находясь в растворе, они могут приводить к замедленному хрупкому разрушению сплавов. Температура перехода сплава ОТ4 из а- в в-состояние соответствует 950 °С, сплава ВТЗ — выше 950 °С.

Элементы, образующие твердые растворы замещения, применяют в качестве легирующих элементов, а-сплавы (ВТ1—00, ВТ1—0) имеют временное сопротивление 294—686 МПа; они хорошо паяются и сохраняют высокую пластичность при криогенных температурах (ниже — 70 °С). Например, сплав ВТ1—0 имеет временное сопротивление выше 980 МПа. Двухфазные сплавы а+в с преобладанием при температуре 20 °С ос-фазы, легированные в-стабилизаторами в количестве до 2 % (ОТ4, ВТ4), имеют временное сопротивление 686—98в ; МПа; они более пластичны, хорошо паяются.

Сплавы титана с преобладанием p-структуры благодаря кубической решетке весьма пластичны при температуре 20 °С и упрочняются при термообработке; они сильнее и глубже окисляются на воздухе, быстрее наводороживаются при травлении. Вместе с тем в сплавах с в-структурой процесс гомогенизации после диффузионной пайки происходит значительно медленнее, чем в сплавах с а + в-структурной и особенно в сплавах с содержанием более 2 % стабилизаторов, что по-видимому, связано с более высоким содержанием в них легирующих элементов.

Титан относится к числу металлов-геттеров, интенсивно поглощающих азот и кислород и образующих с ними в твердом состоянии широкие области твердых растворов. В связи с большой растворимостью кислорода и азота и а-стабилизирующим действием этих элементов в титане на его поверхности при нагреве на воздухе образуется малопластичный слой а-твердого раствора (альфированный слой). Водород мало растворим в а-титане, но образует с а-сплавами гидрид титана Ti(OH), способствующий их охрупчиванию. В а + в-титановых сплавах водород растворим в большей степени и устраняет их эвтектоидный распад. Поэтому восстановительные газовые среды, содержащие азот и водород, применяемые при пайке сплавов на иных основах, не пригодны для пайки титана и его сплавов.

При температуре 650—700 °С титан образует стойкий оксид ТiO2 (рутил), выше температуры 900 °С — нитриды с азотом воздуха. Для предотвращения насыщения титана и его сплавов кислородом и азотом при нагреве, способствующими охрупчиванию, слой оксида и хрупкий слой твердого раствора кислорода и азота в титане (альфированный слой) перед пайкой должны быть тщательно удалены с поверхности паяемых деталей механическим или химическим способом.

Образование оксидов на очищенной поверхности титана при температуре 20 °С происходит сравнительно медленно, и пайка может быть проведена в течение первых суток после травления. При нагреве титана и его сплавов под пайку оксидная пленка образуется более быстро, особенно при температурах выше 650— 700 °С. Оксид титана ТiO2 химически стоек и обладает низкой упругостью диссоциации. В настоящее время для пайки титана и его сплавов иногда применяют специальные реактивные флюсы.

Образование оксидной пленки и альфированного слоя на поверхности паяемого изделия при пайке могут быть предотвращены, если изделие нагревать в чистом проточном аргоне или вакууме. Хотя оксид ТiO2 и не восстанавливается в вакууме с остаточным давлением более 1,33 . 10 -3 —1,33 . 10 -5 Па, относительно большая растворимость кислорода в a-Ti (до 20 %) и сравнительно небольшое содержание кислорода в контейнере при пайке в вакууме (р = 1,33 . 10 -2 —1,33 Па) или в проточном чистом и сухом аргоне (гелии) оказываются достаточными для предотвращения образования оксида на предварительно очищенной поверхности титана при нагреве в этих средах.

Герметизация контейнера и чистота его внутренней поверхно

сти оказывает большое влияние на качество паяного соединения. Небольшая течь или не очищенная от оксидов внутренняя поверхность контейнера из коррозионно-стойкой стали могут быть источниками кислорода, причиной окисления поверхности паяемого изделия и ухудшения качества паяного соединения.

Титан и его сплавы паяют при температуре выше 700—860 °С, т. е. выше температуры перехода a-Ti в B-Ti, в котором особенно высока растворимость кислорода.

От действия кислорода, появляющегося в контейнере из восстановленных оксидов стали, наиболее успешно защищают экраны из коррозионно-стойкой стали или из титана в виде крышек или негерметизированных коробок с чистой поверхностью.

Пайка титана легкоплавкими оловянными и высокоплавкими алюминиевыми припоями возможна только после предварительного лужения паяемой поверхности погружением в расплавленный припой при температурах, при которых тонкий слой пленки ТiO2 может быть восстановлен вследствие растворения кислорода в титане при температуре 800—900 °С. После устранения оксидных пленок и нагрева в инертной среде смачивание титана оловом и алюминием хорошее.

Флюсы, применяемые при пайке сплавов на других основах, не пригодны для пайки титана.

Рекомендуемые в литературе флюсы для пайки титана и его сплавов содержат главным образом хлориды и фториды металлов и рекомендованы для пайки в пламени кислородно-ацетиленовых горелок.

Титан и его сплавы лудят в жидком олове при перегреве до температуры 700—750 °С. Для этого деталь с обезжиренной и протравленной поверхностью быстро погружают в жидкое олово, чтобы поверхность титана не успела нагреться и окислиться. Перед погружением оксидную пленку быстро удаляют с поверхности жидкого олова. Такое лужение можно проводить и в среде проточного аргона. Выдержка в жидком олове технического титана должна быть не менее 15 мин. Деталь, вынутую из жидкого олова, быстро протирают чистой ветошью для удаления оксидной пленки со слоя олова. При этом на облуженной поверхности не должно быть участков, не смоченных оловом.

Необходимость перегрева олова до столь высоких температур при лужении титана и его сплавов, вероятно, обусловлена незначительной скоростью диффузии кислорода из оксидов с поверхности титана вглубь при более низких температурах. Облуженную поверхность перед пайкой слегка зачищают мягкой щеткой и протирают спиртом или ацетоном.

При пайке луженой поверхности температура нагрева паяльника не должна превышать 250 °С, так как выше этой температуры возможно нарушение сплошности слоя полуды. При пайке легкоплавкими припоями применяют обычные для этого процесса флюсы.

Лужение с помощью реактивных флюсов основано на способности титана восстанавливать металлы из их расплавленных солей. Процесс идет по следующим уравнениям:

Ti + 2SnCl2 = TiCl4 + 2Sn; Ti + 4 AgCl=TiCl4 + 4 Ag.

Хлорид титана TiCl4 в виде газа улетучивается с поверхности металла, разрушая при этом оксидную пленку ТiO2, а восстановленные олово и серебро покрывают чистую поверхность облуживаемого металла. Очищенную поверхность титана и его сплавов, покрытую оловом или серебром, подвергают пайке обычными способами.

При реактивно-флюсовом лужении оловом поверхность титана покрывают в печи с нейтральной атмосферой. Реакция восстановления олова происходит при температуре 350—400 °С и сопровождается выделением белого дыма (TiCl4). После окончания реакции и охлаждения деталей остатки флюса должны быть немедленно и тщательно смыты в горячей воде (при температуре 70—90 °С), а детали просушены. Горячее лужение титана и его сплавов перед пайкой проводят с помощью реактивных флюсов или при погружении его в жидкий металл.

Перед пайкой титана с алюминием или алюминиевыми сплавами применяют предварительное алитирование титана в жидком алюминии, перегретом до температуры 720—790 °С. Перед погружением титана в ванну поверхность жидкого алюминия раскисляют флюсами, содержащими хлористые и фтористые соли щелочных металлов (например, флюсом 34А); длительность алитирования обычно не превышает 10—12 мин. Пайка титана и его сплавов на воздухе легкоплавкими оловянными припоями может быть выполнена только по предварительно нанесенному покрытию из химического или гальванического никеля, меди, олова. Временное сопротивление разрыву таких соединений не превышает 49 МПа.

Относительно прочное сцепление «барьерных» металлических покрытий с паяемым металлом получается после термовакуумного напыления слоя металлов (10—20 мкм) при разрежении 1,33 (10 -2 —10 -3 ) Па на предварительно подогретую деталь.

Покрытие титановых сплавов слоем никеля может быть осуществлено также химическим способом из растворов, содержащих гипофосфит никеля; следует учитывать, что при этом покрытие представляет собой сплав Ni— (3—11 %)Р и уже при невысоком нагреве (400—500 °С) происходит распад сплава Ni—Р с выделением фазы Ni3P.

Для титановых сплавов, особенно легированных алюминием, ванадием и молибденом, нашла применение пайка в сухом проточном аргоне с точкой росы — 65 °С с предварительным вакуумированием контейнера. Пайку припоями, содержащими значитель

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector