Bktp-omsk.ru

Делаем сами
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

БГА пайка что это?

Практические приемы пайки BGA элементов.

Зачем нужна пайка BGA.

В современной радиоэлектронной аппаратуре ,такой, как мобильные телефоны, компьютеры и пр. , широко применяются радиоэлементы в корпусе типа BGA (в дальнейшем BGA-элемент). Данный тип корпуса позволяет значительно экономить место на печатной плате за счет размещения выводов на нижней поверхности элемента и выполнения этих выводов в виде плоских контактов, с нанесенным припоем в виде полусферы . В корпусе такого типа выполняют полупроводниковые микросхемы, элементы ВЧ тракта (фильтры, селекторы, коммутаторы ). Пайка такого элемента осуществляется нагревом непосредственно корпуса элемента и зачастую подогрева печатной платы, при помощи горячего воздуха и инфракрасного излучения.

Оборудование для пайки BGA

Пайка BGA-элементов имеет определенные сложности и зачастую для нее применяется весьма сложное и дорогостоящее оборудования. Данная статья описывает пайку с применением минимума средств. Минимум, который необходим для пайки: фен, пинцет, микроскоп, флюс безотмывочный, жидкость для удаления флюса, вата х/б, шило монтажное (лучше стоматологический зубной зонд) для коррекции элемента на плате, фольга с клеевым слоем для теплозащиты.

Процесс пайки BGA

Случай, когда требуется заменить BGA элемент, является более общим, а потому его и рассмотрим. Первое, что нужно сделать- это оценить, не будут ли повреждены близко расположенные элементы потоком горячего воздуха. Микросхемы, залитые компаундом, элементы, имеющие пластиковые детали (микропереключатели, SIM-ридеры) необходимо закрыть фольгой для сведения к минимуму теплового воздействия. Если есть близкорасположенные микробатарейки, микроаккумуляторы, их лучше всего демонтировать, а затем поставить на место при помощи паяльника. Приняв необходимые меры предосторожности, располагаем плату на столе так, чтобы демонтируемый BGA- элемент легко было поднять пинцетом, когда припой расплавится. Имеется в виду, что для захвата пинцетом должно быть необходимое пространство и пинцет при захвате должен располагаться в руке удобно и естественно, иначе очень высока вероятность сдвинуть соседние элементы, так как припой, закрепляющий их, будет тоже расплавлен. Лучше всего плату надежно закрепить в горизонтальном положении и повернуть ее в горизонтальной плоскости под удобным углом. Затем начинаем греть элемент феном, который держим в левой руке, периодически пытаясь приподнять элемент пинцетом (примерно через каждые 30 секунд). Время нагрева сильно зависит от условий в помещении: температуры воздуха, наличия сквозняков, открытых форточек и т.д. Если элемент приподнялся с одного края, то насильно отдирать его нельзя, а нужно отпустить и еще погреть 15-30 секунд. Прикосновение холодным пинцетом сильно остужает элемент, это тоже нужно иметь в виду. Неплохо во время нагрева держать пинцет рядом со снимаемым элементом, для подогрева пинцета. После снятия элемента дальнейшие операции лучше проводить с еще горячей платой. (Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такая плата ремонту не подлежит. ) Когда микросхема снята, необходимо удалить лишний припой с платы. Для этого наносим пастообразный флюс и собираем припой паяльником, периодически удаляя припой с жала. Необходимо учитывать, что большие «горки» припоя затруднят позиционирование нового элемента. А если пятаки(контакты на плате) будут не облужены, то получившийся контакт может быть не надежен. Следует обратить внимание на целостность пятаков. Если отвалились пустые пятаки, то ничего страшного, если отвалился пятак, имеющий контакт, то можно попробовать облудить металлизацию в отверстии и сформировать капельку припоя на месте пятака. Затем удаляем грязь и остатки флюса с платы. Глядя в микроскоп, необходимо проконтролировать результат и исправить недостатки. Недостатки могут быть следующего характера: плохо облуженные пятаки, на пятаках слишком много припоя, замыкания между пятаками, повреждения паяльной маски, поврежденные пятаки, отслоившиеся проводники. Если дефект устранить не удается, то изделие неремонтопригодно. Затем наносим пастообразный флюс. Флюс необходимо наносить на всю поверхность под элементом, даже если контакты расположены только по периметру. Иначе воздух из пустоты в середине при нагреве расширится и значительно сместит элемент. Важно количество флюса. Его должно быть достаточно для смачивания нижней поверхности элемента, но если элемент будет плавать в «луже», то его будет трудно позиционировать. Я предпочитаю флюс, нанесенный на плату, прогреть феном до жидкого состояния, перед помещением BGA-элемента на плату. Так как при пайке он все равно нагреется и элемент может значительно сместиться.

Рис.1 Расположение выводов по периметру.

Область выводов закрашена серым.

Извлекаем элемент из контейнера и ставим на плату, соблюдая ориентацию «ключа». Точное позиционирование выполняем под микроскопом по маркерам при помощи монтажного шила. При позиционировании следует учитывать шаг между контактами. Не обязательно добиваться идеального расположения, достаточно небольшого соприкосновения между «шарами» припоя на BGA-микросхеме и пятаками на плате. Оценивать точность позиционирования необходимо с учетом шага контактов и их размера.

Рис.2 Правильное позиционирование.

Необходимое выравнивание произойдет за счет эффекта смачивания при расплавлении припоя.

На Рис.1 приведен пример правильного позиционирования микросхемы на плате, на Рис.3 и Рис.4 приведены примеры неправильного позиционирования элемента на плате. На Рис.3 «шары» припоя одновременно соприкасаются с двумя пятаками, при этом при расплавлении припоя микросхема может встать неправильно, или могут возникнуть замыкания. На Рис.4 шары совсем не соприкасаются с пятаками, при этом сколько бы мы ни грели элемент, его пайка не произойдет. Обычно имеется взаимосвязь между линейными размерами маркера и шагом выводов на элементе. Если имеются сложности с позиционированием, то иногда имеет смысл прогреть примерно установленный элемент феном, для выпаривания флюса. После выпаривания флюс будет вязким и элемент можно установить более точно.

Рис.3 Неправильная установка. Неоднозначное соприкосновение «шаров» и пятаков.
Рис.4 Неправильная установка. Нет соприкосновения «шаров» и пятаков.

Для пайки необходимо отрегулировать расход воздуха под конкретную форсунку. Элемент не должно сдувать. Если элемент сдувает, то подачу воздуха нужно уменьшить. Температура на индикаторе паяльной станции зачастую не соответствует температуре воздуха, выходящего из форсунки. Нормально, если индикатор будет показывать 500-550 гр.С. Предварительно прогревают элемент, для этого нужно держать фен на расстоянии 2-3 см; через 30-60 секунд приближают фен на расстояние 5-10 мм от поверхности элемента для расплавления припоя. Плавными движениями прогревают поверхность элемента и пространство непосредственно рядом с ним. Примерно через 60-180 сек. элемент заметно осядет и выровняется по маркерам (оседание видно, если смотреть сбоку), что свидетельствует о расплавлении припоя. После оседания элемент следует погреть 10-15 секунд. Большая микросхема может оседать частями, сначала с одной стороны. В этом случае нужно продолжать греть всю поверхность, обращая особое внимание на непропаянную часть. После этого нужно дать остыть плате в течении 15-60 секунд, жидкостью для снятия флюса, снять избытки флюса и просушить плату. Качество пайки можно контролировать по следующим признакам: расположение элемента относительно маркеров; лучше сравнивать с такой же платой или запомнить расположение элемента, маркеры не всегда расположены идеально ровно и может возникать впечатление, что элемент не совсем правильно встал на место, глядя на элемент сбоку, можно оценить, на всех ли контактах образовалось качественное соединение; если рядом с BGA-элементом расположен крупногабаритный элемент, то с одной из сторон пайка может быть затруднена вследствии неудачного распределения воздушных потоков, и элемент с одной из сторон не пропаяется. Глядя при помощи микроскопа на форму капель припоя, можно оценить качество пайки. Обратите внимание. Если при прогреве элемент подпрыгнул, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такое изделие ремонту не подлежит. Ничего страшного, если элемент с небольшим количеством выводов встал криво, не на место. Как правило, возможно его аккуратно поднять и припаять правильно без стандартной накатки шаров. При определенном навыке возможно снять и вновь поставить BGA-элемент и с очень большим количеством выводов и очень мелким шагом выводов, без накатки шаров. Некоторые жидкости для снятия флюса могут вызывать сбои при работе телефона. Поэтому плату после промывки необходимо хорошо просушивать в течении 3-4 часов. Примерный паяльный профиль для паяльной станции типа Martin: 240 гр.—80 сек. 320 гр. —110 сек. Повторная пайка снятого BGA-элемента возможна, но она в данной статье не рассматривается, так как применяется весьма редко. Паяльная маска- это изолирующий состав, которым покрывается печатная плата для предотвращения повреждений проводникв и коротких замыканий между проводниками. Маркеры – это метки на печатной плате, показывающие, как правильно должен стоять элемент; зачастую элемент может быть в корпусах разного размера и на одном посадочном месте , в этом случае на плате будет много маркеров. Если видны вспучивания платы под микроскопом, то это свидетельствует о заводском дефекте; такая плата ремонту не подлежит. Как правило, удается оценить подачу воздуха феном, направляя поток на руку, с расстояния 20-30 см, на время 0,5-1 секунду. Данный прием небезопасен и требует определенного опыта.

BGA и SMD монтаж

BGA и SMD монтаж

Ниже представлена блок схема одной из архитектур современного компьютера/ноутбука.

Как можно увидеть из схемы, весь компьютер состоит из нескольких основных центральных блоков (обведены красным): южный мост (ICH10),северный мост (P43), центральный процессор Intel и блок обработки графики (видеокарта). В «железе» эти блоки представляют собой большие, очень сложные интегральные микросхемы (ИС), с огромным количеством выводов.

Как видно на рисунке, выводы таких ИС — шарики припоя, нанесенные на корпус микросхемы, BGA (англ. Ball grid array — массив шариков) — тип корпуса поверхностно-монтируемых интегральных микросхем.

Установка такой микросхемы проходит в несколько этапов, микросхему располагают на печатной плате, согласно маркировке ответных контактных площадок на плате, далее зону установки микросхемы нагревают до температуры плавления припоя, силы поверхностного натяжения расплавленного припоя заставляют микросхему зафиксироваться четко над тем местом, где она должна находиться на плате.

Установленная ИС на плату:

Так выглядит ИС на плате в разрезе, видны шары припоя, на которых впаяна ИС и слои меди в плате:

Основное преимущество BGA монтажа – высокая плотность размещения контактов на ИС небольших размеров, вместе с этим это является и самым слабым местом — высокая чувствительность к механическим нагрузкам, будь то вибрационные, ударные, либо же, нагрузки, возникающие в процессе теплового расширения корпуса ИС и платы на которую она впаяна. Вследствии таких воздействий, контакт между шариками припоя и платой нарушается, и устройство перестает работать, проще говоря, шарики отрываются от контактных площадок. Стоит заметить, что некачественный монтаж микросхемы на заводе производителя или в ремонтной мастерской так же может стать причиной нарушения контактов и выхода из строя устройства. В интернете встречаются несколько названий такого дефекта: отвал, недопай, микротрещины в пайке (холодная пайка) и пр.

C помощью оптических приборов, можно собственными глазами увидеть, как выглядят такие дефекты: недопай, холодные трещины.

Устранение такого дефекта пайки возможно при наличии соответствующего оборудования. Проходит в 3 этапа:

1) Демонтаж ИС на специальной инфракрасной или термовоздушной паяльной станции.

2) Нанесение новых шаров припоя, с помощью трафарета и оснастки, с последующим оплавлении в ИК печи.

3) Завершающий этап – установка ИС на плату.

Весь процесс называется реболл, реболлинг, после такой процедуры, как правило, причина неисправности устраняется и устройство вновь готово к эксплуатации. Однако, не всегда реболл по настоящему устраняет дефект, даже если устройство заработало вновь, эффект этот кратковременен. Происходит такое по причине того что дефект кроется не в монтаже, а внутри самого чипа, в таком случае, микросхему нужно только менять.

Почему чип нужно именно менять, подробно описано в следующей статье.

Пайка bga микросхем

Замена чипа на паяльной станции

Сервисный центр Антарес, СПб Большой Проспект Петроградской Стороны дом 100 офис 305 телефон (812) 922-98-73

Стоимость пайка bga микросхем ноутбука (мост или видеокарта или процессор) 4000 руб. без стоимости чипа

Случай, когда требуется заменить BGA элемент, является общим, рассмотрим их. Если хотите сделать данный ремонт вы можите обратится в наш сервисный центр.
Пайка микросхем требует применения специальных флюсов и смывок. В условиях мастерской пайка осуществляться на специальных полуавтоматических установках.

Северный мостЗамена чипсетаВидеочип

    Перечень работ за 4000 рублей — При замене bga микросхем

    • Обслуживание системы охлаждения
    • Сборка ноутбука
    • Тестирование / гарантия полгода
    • Диагностика / разборка ноутбука
    • Установка неисправности / подбор чипа
    • Замена bga микросхемы снятие и монтаж

    Компоненты в корпусах BGA (Ball Grid Array — матрица шариковых выводов) представляют собой самый сложный элемент в классической технике поверхностного монтажа и вызывают максимальное число вопросов у мастеров и пользователей. Большое количество дефектов, возникающих при пайке и проявляющихся при эксплуатации ноутбука, что дает хорошую предпосылку обратится в сервис умеющий работать с bga компонентами.

    Стоимость работ — Цены указаны с учетом запчастей для частных лиц

    Ремонт систем питания ноутбукастоимость / руб
    Замена северного моста ноутбука4000 / 6500
    Замена bga процессоровот 4000
    Замана чипа видеокарты в ноутбукеот 4000
    Ремонт bga Appleот 7000
    Замена южного моста материнской платыот 4000
    Замена bga микросхем ssd / сеть / контролеры2500

    При замене видеокарты или моста ноутбука оплавление паяльной пасты является основным методом формирования паяных соединений. При правильном применении пайка оплавлением обеспечивает высокий выход годной продукции, ее высокую надежность. В нашем сервисном центре гарантия на подобные виды работ составляет полгода. Среди всех условий данного процесса температурный профиль пайки — один из наиболее важных моментов, определяющий уровень дефектов при пайке.

    Факторы, влияющие на формирование температурного профиля пайки bga

    1. Компоненты
    2. Печатные платы (в данном случае, это материнская плата ноутбука)
    3. Паяльная паста / оборудование
    4. Опыт мастра

    Дефекты при пайке микросхем

    Плохое смачивание / расползание пасты / образование перемычек эффект / «надгробного камня» / «холодная пайка» / образование бусинок припоя / капиллярное затекание припоя / деформация паяных соединений / отсутствие контакта / растрескивание компонента, а также отслоение припоя или контактной площадки из-за внутренних напряжений / образование пустот.

    ДефектМеханизм образования дефектаТребуемые характеристики профиля
    Растрескивание компонентовСлишком высокое внутреннее напряжение из-за высокой скорости изменения температурыНевысокая скорость изменения температуры
    Эффект «надгробного камня»Неравномерное смачивание с разных концов чип-компонентаМедленное нарастание температуры вблизи точки плавления припоя для минимизации разброса температур около чип-компонента
    Сдвиг компонентаНеравномерное смачивание с разных концов чип-компонентаМедленное нарастание температуры вблизи точки плавления припоя для минимизации разброса температур около чип-компонента
    Капиллярное затекание припоя на вывод компонентаТемпература выводов больше, чем температура ППМедленное нарастание температуры, чтобы позволить плате и компонентам достичь одинаковой температуры перед оплавлением припоя; более интенсивный нагрев снизу
    Образование шариков припояРазбрызгивание припояМедленное нарастание температуры для постепенного нарастания растворителей в паяльной пасте и влаги
    Чрезмерное окисление до оплавления припояМинимизация подводимого тепла до достижения температуры пайки (медленное нарастание температуры, отсутствие плоской зоны профиля на стадии стабилизации) для уменьшения окисления
    Расползание пасты во время пайкиСнижение вязкости при увеличении температурыМедленное нарастание температуры для постепенного испарения растворителей для слишком сильного снижения вязкости
    Образование перемычекРасползание пастыМедленное нарастание температуры для постепенного испарения растворителей для слишком сильного снижения вязкости
    Образование бусинок контактаИнтенсивная дегазация под компоненты с малым зазором между нижней поверхностью и ППМедленное нарастание температуры перед оплавлением для снижения интенсивности газовыделений из паяльной пасты
    Отсутствие контактаКапиллярное затекание припоя на выводы компонентовМедленное нарастание температуры, чтобы позволить плате и компонентам достичь одинаковой температуры перед оплавлением припоя; более интенсивный нагрев снизу
    Отсутствие смачиванияМинимизация подводимого тепла до достижения температуры пайки(минимизация зоны стабилизации или использование профиля с линейным нарастанием от комнатной температуры до точки плавления припоя) для снижения окисления
    Слабое смачиваниеЧрезмерное окислениеМинимизация подводимого тепла до достижения температуры пайки(минимизация зоны стабилизации или использование профиля с линейным нарастанием от комнатной температуры до точки плавления припоя) для снижения окисления
    Образование пустотЧрезмерное окислениеМинимизация подводимого тепла до достижения температуры пайки (минимизация зоны стабилизации или использование профиля с линейным нарастанием от комнатной температуры до точки плавления припоя) для снижения окисления
    Оставшиеся составляющие флюса имеют слишком высокую вязкостьПрофиль пайки с более низкой температурой для того, чтобы сохранить большее количество растворителя в оставшемся флюсе
    ОбугливаниеПерегревБолее низкая температура, меньшее время пайки
    ВыщелачиваниеПерегрев при температурах выше точки плавления припояМинимизация подводимого тепла при температурах выше точки плавления припоя с помощью снижения температуры, сокращение времени пайки
    Уменьшение смачивающей способностиПерегрев при температурах выше точки плавления припояМинимизация подводимого тепла при температурах выше точки плавления припоя с помощью снижения температуры, сокращение времени пайки
    «Холодная пайка»Плохое слияние частиц припояДостаточно высокая максимальная температура
    Слишком толстый слой интерметаллического соединенияСлишком высокий уровень подводимого тепла выше точки плавления припояСнижение максимальной температуры, сокращение продолжительности стадии пайки
    Крупнозернистая структураЭффект отжига из-за низкой скорости охлажденияБолее быстрое охлаждение
    Отслоение припоя или контактной площадкиБольшое механическое напряжение из-за несоответствия коэффициентов теплового расширенияБолее медленное охлаждение
    Читать еще:  Пайка волной

    Температурный профиль пайки bga

    Стадии температурного профиля пайки

    Стадия предварительного нагрева Данный этап позволяет снизить тепловой удар на электронные компоненты и печатные платы. В процессе предварительного нагрева происходит испарение растворителя из паяльной пасты.
    Предварительный нагрев рекомендуется осуществлять до температуры 95-130 °С, скорость повышения температуры — 0,5-1 °С/с, непосредственно во время процесса пайки bga.
    Перед пайкой, материнскую плату ноутбука, предварительно необходимо прогреть («просушить») при температуре 100 градусов в течение двух-трех часов.
    Завышение скорости предварительного нагрева может приводить к преждевременному испарению растворителя, содержащегося в паяльной пасте Стадия стабилизации Стадия стабилизации позволяет активизировать флюсующую составляющую и удалить избыток влаги из паяльной пасты. Повышение температуры на этой стадии происходит очень медленно. Стадию стабилизации также называют стадией температурного выравнивания, так как эта стадия должна обеспечивать нагрев всех компонентов на плате до одинаковой температуры, что предотвращает повреждение компонентов за счет теплового удара. Максимальная активация флюса происходит при температуре около 150 °С. Рекомендуемое время стабилизации 30 с считается достаточным. В конце зоны стабилизации температура обычно достигает 150-170 °С. Сокращение времени стабилизации может приводить к дефектам типа «холодная пайка» и эффекту «надгробного камня». Обращаем внимание на использования качественно флюса, дешевый традиционный флюс не подойдет. Большое внимание на этой стадии необходимо уделить зоне нагрева, чтобы близлежайшие компоненты не пострадали. К, примеру, если рядом с мостом стоит видеокарта, то неравномерный нагрев приведет к залипанию паек на соседнем элементе. Стадия оплавления На стадии оплавления температура повышается до расплавления припоя пасты и происходит формирование паяного соединения. Для образования надежного паяного соединения максимальная температура пайки должна на 30-40 °С превышать точку плавления паяльной пасты и составлять 235-260 °С (на плате). Время, в течение которого печатная плата находится выше точки плавления (205-220 °С), должно быть в пределах 30-90 с, предпочтительно не более 60 с. Скорость повышения температуры в зоне оплавления должна составлять 2-4 °С/с.
    Получить таких температур за определенное время при помощи фена практически невозможно. Поэтому мы категорически не рекомендуем паять dga в домашних условиях. Единственное чего можно достичь, это отрыва и деформации дорожек под чипом.
    Примечание. Низкая температура пайки обеспечивает слабую смачиваемость, особенно для компонентов с плохой паяемостью. Минимальная температура, необходимая для образования интерметаллического соединения, при использовании бессвинцовых припоев 235-260 °С. Чрезмерное повышение температуры может разрушить чип, а также отслоить материнскую плату. Стадия охлаждения Для обеспечения максимальной прочности паяных соединений скорость охлаждения должна стремиться к максимально допустимой. Рекомендуемая скорость охлаждения 3-4 °С/с до температуры ниже 130 °С .
    Завышение скорости принудительного охлаждения может приводить к возникновению больших внутренних напряжений в печатной плате из-за различного коэффициента теплового расширения базового материала печатных плат, корпусов компонентов, металлических печатных проводников и металлизированных отверстий.
    Несмотря на все выше сказанное, окончательная корректировка температурного профиля производится мастером сервисного центра исходя из: конструкции печатной платы; количества, типа и размеров компонентов; типа используемой паяльной пасты; особенностей используемого оборудования, а также результатов экспериментальных паек для каждого ноутбука.

    Остались вопросы? Свяжитесь с нами по телефону: +7 (812) 922 98 73

    Обучение пайке bga

    Многие мастера по ремонту телефонов и ноутбуков хотят освоить навык пайки системных плат. Научиться паять можно разными способами. Есть эффективные, или не особо эффективные. В статье разберем разные способы обучения пайке и чему реально научиться на курсах пайки.

    Во время обучения пайке важно научиться:

    • диагностике плат,
    • схемотехнике,
    • основам радиотехники,
    • демонтажу (выпаиванию) микросхем,
    • удалению компаунда,
    • пайке bga микросхем.

    А теперь подробнее.

    Главное, на чем стоит сфокусировать свое внимание, это диагностика устройства. Так как речь идет про пайку bga, соответственно здесь и далее будем рассматривать системную плату смартфона и ноутбука.

    Мастера по ремонту телефонов с большим бэкграундом, говорят, что успех в ремонте на 80% зависит от правильно выполненной диагностики. Поэтому важно при визуальном осмотре обратить внимание на:

    • целостность втулок,
    • наличие или отсутствие компаунда (полимерная смола),
    • «следы» попадания влаги на плату. Это может быть коррозия, изменившие свой цвет индикаторы влаги или радиокомпоненты,
    • остатки флюса (свидетельствует, что ранее ремонт уже выполнялся,
    • состояние защитных экранов и рамок по периметру платы.

    Для диагностики применяется следующее оборудование (в порядке значимости):

    • мультиметр,
    • лабораторный блок питания,
    • USB-tester,
    • тепловизор,
    • осциллограф.

    Для диагностики iPhone применяется бесплатная программа 3uTools.

    Зная расположение элементов на плате, их характеристики и взаимосвязи проведение диагностики сильно упрощается. В сервисных центрах применяются следующие программы:

    • Zillion x Work,
    • Phoneboard,
    • WIXINJI.

    Начинать паять лучше под руководством опытного наставника. Который поможет откалибровать термовоздушную паяльную станцию, для того чтобы паять на «реальных» температурах. Температурный режим очень важен при выпаивании микросхем. При превышении температуры можно «угреть» плату, определяется легко из-под микросхем (на компаунде) вылетают шарики припоя. А при заниженной температуре часто «отрывают пятаки» повреждают шариковые выводы на системной плате. Тонкостей в обучении пайке очень много, например в какую сторону направлять фен, чтобы не повредить рядом установленные микросхемы. Или как убрать компаунд с микросхемы со стеклянным корпусом, так чтобы не повредить сам корпус чипа. Или как медной оплеткой подготовить контактную площадку на плате, так чтобы не повредить маску.

    Существует как минимум 3 варианта, при реализации которых вы сможете самостоятельно выполнять ремонты системных плат.

    • Самостоятельно, просматривая ролики на YouTube.
    • Договорившись с частным мастером, который работает в сервисном центре.
    • В специализированном центре обучения.

    Разные способы подразумевают и разную итоговую стоимость и соответственно отличающиеся временные периоды.

    БГА пайка что это?

    Электронная техника миниатюризируется, поэтому микросхемы в корпусах типа BGA получают все большее распространение в радиоэлектронной аппаратуре, в том числе в компьютерах и мобильных устройствах. Статья дает ответ на вопрос «Как паять корпуса BGA?» в форме подробной инструкции с практическими рекомендациями по пайке в домашних условиях.

    Для начала разберемся, что такое корпус BGA. Аббревиатура BGA расшифровывается как «Ball grid array», то есть «массив шариков». Выражаясь научным языком, BGA — это тип корпуса поверхностно-монтируемых интегральных микросхем. BGA произошёл от PGA («Pin grid array»). BGA-выводы — шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы.

    Микросхему располагают на печатной плате согласно маркировке первого контакта на микросхеме и на плате. Затем микросхему нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плате, и не позволяет шарикам деформироваться.

    Достоинство корпуса BGA — компактность и экономия места на печатной плате. Выводы размещаются на нижней поверхности элемента в виде плоских контактов с нанесенным припоем в виде полусферы. В корпусах такого типа выполняют полупроводниковые микросхемы: процессоры, ПЛИС и память. Пайка элемента в корпусе BGA осуществляется путем нагрева непосредственно корпуса элемента, с подогревом печатной платы при помощи горячего воздуха или инфракрасного излучения.

    Перейдем непосредственно к пайке BGA в домашних условиях.

    Приступим к процессу пайки.

    1) Микросхема перед началом пайки выглядит так:

    2) Чтобы облегчить процесс постановки микросхемы на плату, сделаем риски на плате по краю корпуса микросхемы, если на плате нет шелкографии, которая показывает ее положение.

    Выставим температуру 320–350°C на термофене. Для точного выбора ориентируйтесь на размер корпуса микросхемы. Чтобы не повредить мелкие детали, припаянные рядом, выставим минимальную скорость (напор) воздуха.

    В течение минутного прогрева держим фен перпендикулярно к плате. Чтобы не повредить кристалл, направляем воздух не в центр, а по краям, по периметру. Через минуту поддеваем микросхему за край и поднимаем над печатной платой. Если микросхема «не поддается», значит припой расплавился не полностью; продолжайте нагрев. Не прилагайте усилия для поднятия микросхемы: есть риск повредить рисунок печатной платы.

    3) После процесса «отпайки» печатная плата и микросхема выглядят следующим образом:

    4) В качестве эксперимента на полученные плату и микросхему нанесем флюс.

    Как выбрать флюс для пайки BGA, читайте в данной статье.

    После прогрева припой соберется в неровные шарики. Нанесем спиртоканифоль (при пайке на плату пользоваться спиртоканифолью нельзя из-за низкого удельного сопротивления), греем и получаем:

    Вот так выглядят плата и микросхема после отмывки:

    Припаять эту микросхему на старое место просто так не получится, а значит нужна замена.

    5) С помощью оплетки для удаления припоя 3S-Wick очистим платы и микросхемы от старого припоя. При очистке будьте аккуратны: не повредите паяльную маску, иначе потом припой будет растекаться по дорожкам. Полученный результат:

    6) Приступим к «накатке» новых шаров. Теоретически, можно использовать готовые шары. Но вполне вероятно, что Вам потребуется разложить не одну и даже не две сотни таких шаров, потратив на это кучу времени и нервов. Трафареты для нанесения паяльной пасты способны решить эту проблему.

    Рекомендуем паяльную пасту KOKI S3X58-M650-7 для BGA*. Мы сравнили нашу паяльную пасту и дешевый аналог, предлагаемый другой фирмой, которую не будем называть из соображений корпоративной этики. На фото виден результат нагрева небольшого количества пасты. Паста KOKI сразу же превращается в блестящий гладкий шарик, а дешевая распадется на множество мелких шариков.

    *При накатке шаров паяльной пасты обратите внимание на корпус микросхемы: если на нем не стоит маркировка «Pb free», используйте свинецсодержащую пасту SS48-A230. Это связано с более низкой температурой плавления свинецсодержащей пасты. Фен ставим на 250–270°C.

    Итак, закрепляем микросхему в трафарете для нанесения паяльной пасты с помощью крепежной изоленты:

    Затем шпателем или просто пальцем наносим паяльную пасту.

    После нанесения придерживаем трафарет пинцетом и расплавляем пасту. Температуру на фене выставляем не больше 300°C. Фен держим перпендикулярно плате. Трафарет придерживаем пинцетом до полного застывания припоя, потому что при нагреве трафарет изгибается.

    После остывания флюса снимаем крепежную изоленту и феном с температурой 150°С аккуратно нагреваем трафарет до плавления флюса. После этого аккуратно отделяем микросхему от трафарета. В результате получаем ровные шары. Микросхема готова к постановке на плату:

    7) Приступаем к пайке микросхемы на плату.

    В начале статьи мы советовали сделать риски на плате. Если Вы все же проигнорировали этот совет, то позиционирование делаем следующим образом: переворачиваем микросхему выводами вверх, прикладываем краем к пятакам, чтобы они совпадали с шарами, засекаем, где должны быть края микросхемы (можно слегка царапнуть иглой). Сначала одну сторону, потом перпендикулярную. Достаточно двух рисок. Затем ставим микросхему по рискам на плату и стараемся на ощупь шарами поймать пятаки по максимальной высоте. Шары должны встать на остатки прежних шаров на плате.

    Можно произвести установку, просто заглядывая под корпус, либо по шелкографии на плате.

    Вновь прогреваем микросхему до расплавления припоя. Микросхема сама точно встанет на место под действием сил поверхностного натяжения расплавленного припоя. Важно: флюса наносим небольшое количество! Температуру фена вновь выставляем 320–350°С, в зависимости от размера корпуса микросхемы. Для свинецсодержащих микросхем ставим 250–270°C.

    Как перепаять BGA микросхему

    Что такое BGA микросхема?

    BGA (Ball Grid Array) — матрица из шариков. То есть это тип микросхем, которые вместо выводов имеют припойные шарики. Этих шариков на микросхеме могут быть тысячи!

    В наше время микросхемы BGA применяются в микроэлектронике. Их часто можно увидеть на платах мобильных телефонов, ноутбуков, а также в других миниатюрных и сложных устройствах.

    Как перепаять BGA микросхему

    В ремонтах телефонов бывает очень много различных поломок, связанных именно с микросхемами. Эти BGA микросхемы могут отвечать за какие-либо определенные функции в телефоне. Например, одна микросхема может отвечать за питание, другая – за блютуз, третья – за сеть и тд. Иногда, при падении телефона, шарики микросхемы BGA отходят от платы телефона и у нас получается, что цепь разорвана, следовательно – телефон теряет некоторые функции. Для того, чтобы поправить это дело, ремонтники или прогревают микросхему, чтобы припойный шарик расплавился и опять “схватился” с контактной площадкой на плате телефона или полностью демонтируют микросхему и “накатывают” новые шарики с помощью трафарета. Процесс накатывания шаров на микросхему BGA называется реболлинг. На российских просторах этот термин не прижился и у нас это называют просто “перекаткой”.

    Подопытным кроликом у нас будет плата мобильного телефона.

    Для того, чтобы легче было отпаивать “вот эти черные квадратики” на плате, мы воспользуемся инфракрасным преднагревателем или в народе “нижним подогревом”. Ставим на нем температуру 200 градусов по Цельсию и идем пить чай. После 5-7 минут приступаем парировать нашего пациента.

    Читать еще:  Флюс Ф-64

    Остановимся на BGA микросхеме, которая попроще.

    Теперь нам надо подготовить инструменты и химию для пайки. Нам никак не обойтись без трафаретов для различных BGA микросхем. Те, кто серьезно занимается ремонтами телефонов и компьютерной техники, знают, насколько это важная вещь. На фото ниже предоставлен весь набор трафаретов для мастера по ремонту мобильных телефонов.

    Трафареты используются для “накатывания” новых шаров на подготовленные BGA микросхемы. Есть универсальные трафареты, то есть под любые BGA микросхемы. А есть также и специализированные трафареты под каждую микросхему. В самом верху на фото мы видим специализированные трафареты. Внизу слева – универсальные. Если правильно подобрать шаг на микросхеме, то можно спокойно накатать шары на любой из них.

    Для того, чтобы сделать реболлинг BGA микросхемы, нам нужны также вот такие простые инструменты и расходные материалы:

    Здесь всем вам знакомый Flux-off. Подробнее про него и другую химию можно прочесть в статье Химия для электронщика. Flus Plus, паяльная паста Solder Plus (серая масса в шприце с синим колпачком) считается самой лучшей паяльной пастой в отличие от других паст. Шарики с ней получаются как заводские. Цена на такую пасту дорогая, но она того стоит. Ну, и конечно, среди всего прочего барахла есть также ценники (покупайте, чтобы они были очень липкие) и простая зубная щетка. Все эти инструменты нам понадобятся, чтобы сделать реболлинг простой BGA микросхеме.

    Для того, чтобы не спалить элементы, расположенные рядом, мы их закроем термоскотчем.

    Смазываем обильно микросхему по периметру флюсом FlusPlus

    И начинаем прогревать феном по всей площади нашу BGA

    Вот здесь и наступает самый ответственный момент при отпаивании такой микросхемы. Старайтесь греть на воздушном потоке чуть меньше среднего значения. Температуру повышайте буквально по пару градусов. Не отпаивается? Добавьте немного жару, и главное НЕ ТОРОПИТЕСЬ! Минута, две, три… не отпаивается… добавляем жару.

    Некоторые ремонтники любят трепаться “хахаха, я отпаиваю BGАшку за считанные секунды!”. Отпаивают то они отпаивают, но при этом не понимают, какой стресс получает отпаиваемый элемент и печатная плата, не говоря уже о близлежащих элементах. Повторю еще раз, НЕ ТОРОПИТЕСЬ, ТРЕНИРУЙТЕСЬ НА ТРУПАХ. НЕ ТОРОПИТЕСЬ срывать не отпаянную микросхему, это вам выйдет боком, потому как оборвете все пятаки под микросхемой! Пользуйтесь специальными устройствами для поднятия микросхем. Их я находил на Али по этой ссылке.

    И вот мы греем феном нашу микросхему

    и заодно проверяем ее с помощью экстрактора для микросхем. Про него я писал еще в этой статье.

    Готовая к поднятию микросхема должна “плавать” на расплавленных шариках, ну скажем… как кусочек мяса на холодце. Притрагиваемся легонько к микросхеме. Если она двигается и опять становится на свое место, то аккуратненько ее поднимаем с помощью усиков (на фото выше), Если же у вас такого устройства нет, то можно и пинцетом. Но будьте предельно осторожны! Не прикладывайте силу!

    В настоящее время существуют также вакуумные пинцеты для микросхем такого рода. Есть ручные вакуумные пинцеты, принцип действия у которых такой же, как и у Оловоотсоса

    а есть также и электрические

    У меня был ручной пинцет. Честно говоря, та еще какашка. Закоренелые ремонтники используют электрический вакуумник. Стоит только приблизить такой пинцет к микросхеме BGA, которая уже “плавает” на расплавленных шариках припоя, как он тут же ее подхватывает своей липучкой.

    По отзывам, электрический вакуумный пинцет очень удобен, но мне все-таки не довелось его использовать. Короче говоря, если надумаете, то берите электрический.

    Но, вернемся все-таки к нашей микросхеме. Крохотным толчком я убеждаюсь, что шарики действительно расплавились, и плавным движением вверх переворачиваю BGA микросхему. Если рядом много элементов, то идеально было бы использовать вакуумный электрический пинцет или пинцет с загнутыми губками.

    Ура, мы сделали это! Теперь будем тренироваться запаивать ее обратно :-).

    Вот и начинается самый сложный процесс – процесс накатывания шариков и запаивания микросхемы обратно. Если вы не забыли – это называется перекаткой. Для этого мы должны подготовить место на печатной плате. Убрать оттуда весь припой, что там остался. Смазываем все это дело флюсом:

    и начинаем убирать оттуда весь припой с помощью старой доброй медной оплетки. Я бы посоветовал марку Goot wick. Эта медная оплетка себя очень хорошо зарекомендовала.

    Если расстояние между шариками очень малое, то используют медную оплетку. Если расстояние большое, то некоторые ремонтники не прибегают к медной оплетке, а берут жирную каплю припоя и с помощью этой капельки собирают весь припой с пятачков. Процесс снятия припоя с пятачков BGA – очень тонкий процесс. Лучше всего на градусов 10-15 увеличить температуру жала паяльника. Бывает и такое, что медная оплетка не успевает прогреться и вырывает за собой пятачки. Будьте очень осторожны.

    Дальше прыскаем туда Flux-off, чтобы очистить от нагара и лишнего флюса наше место под микросхему

    и зашкуриваем с помощью простой зубной щетки, а еще лучше ватной палочкой, смоченной в Flux-Off.

    Получилось как то так:

    Если присмотреться, то видно, что некоторые пятачки я все таки оборвал (внизу микросхемы черные круги, вместо оловянных) Но! Не стоит расстраиваться, они, как говорится, холостые. То есть они не никак электрически не связаны с платой телефона и делаются просто для надежности крепления микросхемы.

    Далее берем нашу BGAшку и убираем все лишние припойные шарики. В результате она должны выглядеть вот так:

    И вот начинается самое интересный и сложный процесс – накатывание шаров на микросхему BGA. Кладем подготовленную микросхему на ценник:

    Находим трафарет с таким же шагом шаров и закрепляем с помощью ценника микросхему снизу трафарета. Втираем в отверстия трафарета с помощью пальца паяльную пасту Solder Plus. Должно получиться как-то вот так:

    Держим с помощью пинцета одной рукой пинцет, а в другой фен и начинаем жарить на температуре примерно 320 градусов на очень маленьком потоке всю площадь, где мы втирали пасту. У меня не получилось сразу в двух руках держать и фотоаппарат и фен и пинцет, поэтому фотографий получилось маловато.

    Снимаем готовую микросхему с трафарета и смазываем чуть флюсом. Далее пригреваем феном до расплавления шаров. Это нам нужно, чтобы шарики ровнёхонько стали на свои места.

    Смотрим, что у нас получилось в результате:

    Блин, чуточку коряво. Одни шарики чуть больше, другие чуть меньше. Но все равно, это нисколько не помешает при запайке этой микросхемы обратно на плату.

    Чуточку смазываем пятаки флюсом и ставим микросхему на родное место. Выравниваем края микросхемы с двух сторон по меткам. На фото ниже только одна метка. Другая метка напротив нее по диагонали.

    И на очень маленьком воздушном потоке фена с температурой 350-360 градусов запаиваем нашу микрушку. При правильной запайке она должна сама нормально сесть по меткам, даже если мы чуток перекосили.

    Где ключ у BGA микросхемы

    Давайте разберем момент, когда мы вдруг забыли, как ставится микросхема. Думаю, у всех ремонтников была такая проблема ;-). Рассмотрим нашу микрушку поближе через электронный микроскоп. В красном прямоугольнике мы видим кружок. Это и есть так называемый “ключ” откуда идет счет всех шариковых выводов BGA .

    Ну вот, если вы забыли, как стояла микросхема на плате телефона, то ищем схему на телефон (в интернете их пруд пруди), в данном случае Nokia 3110С, и смотрим расположение элементов.

    Опаньки! Вот теперь мы узнали, в какую сторону должен быть расположен ключик!

    Кому лень покупать паяльную пасту (стоит она очень дорого), то проще будет приобрести готовые шарики и вставлять их в отверстия трафарета BGA.

    На Али я их находил целым набором, например здесь.

    Заключение

    Будущее электроники за BGA микросхемами. Очень большую популярность также набирает технология microBGA, где расстояние между выводами еще меньше! Такие микросхемы перепаивать уже возьмется не каждый). В сфере ремонта будущее за модульным ремонтом. В основном сейчас все сводится к покупке какого-либо отдельного модуля, либо целого устройства. Не зря же смартфоны делают монолитными, где и дисплей и тачскрин уже идут в одной связке. Некоторые микросхемы, да и вообще целые платы заливают компаундом, который ставит на “нет” замену радиоэлементов и микросхем.

    БГА пайка что это?

    Время чтения 6 мин

    Пайка bga

    Пайка bga микросхем

    Как паять платы? И как расшифровывается BGA? На эти два часто задаваемых вопроса, во время прохождения курсов пайки, отвечают мастера Bgacenter. От английского – ball grid arrey, то есть массив шариков, своим видом похожий на сетку. Шарики из припоя наносятся на микросхему через трафарет, затем потоком горячего воздуха, расплавляется сам припой и формируются контакты правильной формы.

    А процесс пайки состоит из определенной последовательности действий, соблюдая которую получаем качественное соединение. Но существует большое количество нюансов, ради которых и приезжают на обучение. Начиная с того под каким углом и на каком расстоянии от платы держать сопло фена, температурные режимы демонтажа и монтажа микросхем, с какой стороны заводить лопатку. А при проведении диагностики, и наличии межслойного короткого замыкания ничего не нагревается. Как в этом случае найти неисправный элемент или цепь? И много других тонкостей которые может знать действующий мастер сервисного центра. И тот кто может подтвердить свой уровень выполненными ремонтами.

    Ремонт iphone в Bgacenter

    Выпаивание чипа

    90 % успешности ремонта зависит от правильно выполненного демонтажа микросхем. Именно на этом этапе важно не оторвать пятаки и не повредить микросхему высокой температурой. А начинают выпаивание чипа, с удаления компаунда.

    Компаунд

    Компаунд – полимерная смола, обычно черного или коричневого цвета, применяемая при изготовлении системных плат телефонов. Назначение компаунда:

    • Дополнительная фиксация радиокомпонентов и bga микросхем на плате.
    • Защита не изолированных контактов от попадания влаги.
    • Повышение прочности платы.

    Наиболее ответственные микросхемы, такие как: CPU, BB_RF, EPROM, NAND Flash, Wi-Fi в заводских условиях после установки, заливаются компаундом. И перед тем как выполнять демонтаж, необходимо очистить периметр от смолы.

    Последовательность демонтажа

    1. Внимательно осмотреть плату, на предмет ранее выполнявшихся ремонтов.
    2. Выполнить диагностику, произвести необходимые измерения.
    3. Подготовить плату к пайке, удалить защитные экраны, наклейки. Отключить и убрать коаксиальный кабель.
    4. Закрепить motherboard в соответствующем держателе.
    5. Удалить компаунд вокруг демонтируемого чипа. Температура на фене при этом 210 – 240 градусов Цельсия.
    6. Установить теплоотводы. Место установки теплоотводов зависит от месторасположения выпаиваемой микросхемы.
    7. Феном прогреть плату в течение нескольких секунд. Тем самым повышаем температуру платы, для того чтобы флюс растекался равномерно.
    8. Нанести FluxPlus, или любой другой безотмывочный флюс, на поверхность чипа.
    9. Направить поток горячего воздуха на выпаиваемый элемент. Температура при демонтаже 340 градусов Цельсия. Как понять, что припой расплавился и настало время убирать микросхему с платы? Для этого существует несколько способов:
      1. Отслеживать время по секундомеру.
      2. Отсчитывать секунды про себя.
      3. “Толкать” зондом или пинцетом саму микросхему или рядом расположенную обвязку (конденсаторы, резисторы или катушки). Как только отпаиваемый чип начнет сдвигаться, на доли миллиметра, настало время заводить лопатку под или воспользоваться пинцетом.
    10. Подготовить контактную площадку. Для этого:
      1. специальной лопаткой убрать остатки компаунда;
      2. залудить сплавом Розе все без исключения контакты;
      3. оплеткой собрать остатки припоя с рабочей поверхности;
      4. после остывания motherboard до комнатной температуры, отмыть контактную площадку спиртом, БР-2 или DEAGREASER.
    11. Плата подготовлена для установки исправной микросхемы.

    Пайка bga чипов

    Общий принцип пайки следующий, благодаря создаваемому поверхностному натяжению при расплавлении припоя, происходит фиксация микросхемы относительно контактной площадки на системной плате. Температура пайки bga микросхем на платах iPhone 320 – 350 градусов Цельсия.

    1. Специальным ножом очистить компаунд.
    2. Медной оплеткой 1 или 2 мм (зависит от геометрических размеров чипа) удалить остатки припоя.
    3. Восстановить шариковые выводы. Существует два способа формирования выводов:
      1. Паста bga через трафарет наносится на поверхность микросхемы (приоритетный метод) Используется в большинстве случаев.
      2. Вручную, шариками BGA. Этот вариант подходит для чипов с малым количеством выводов, до 50. Хотя несколько лет назад, когда качество трафаретов оставляло желать лучшего) модемы на iPhone 5S накатывались вручную. То есть каждый шарик, зондом или пинцетом, устанавливался отдельно. А это 383 контакта, посчитали в ZXW. Если при распределении шариков на микросхеме приклееной к трафарету, шары не фиксируются в отверстиях трафарета; это значит нанесено не достаточное количество флюса на микросхему.
    4. Если работаем с пастой, обязательно после того как убрали трафарет, феном прогреть микросхему, для формирования контактов правильной формы. Дополнительно для этих целей может использоваться мелкозернистая наждачная бумага, Р500 ГОСТ Р 52381-2005.
    5. Спиртом и зубной щеткой финально очистить микросхему.
    6. Припаять чип на контактную площадку, установив его по ключу и зазорам.
    7. При установки новой микросхемы (приобретенной у поставщика), обязательная процедура – перекатать чип на свинец содержащий припой. Это необходимо, для понижения температуры плавления припоя и уменьшения времени воздействия на плату высокой температурой.

    Нижний подогрев для пайки bga

    Для уменьшения времени воздействия на плату высоких температур используется подогревать плат. Рекомендуем моноблочный подогреватель печатных плат СТМ 10-6. Стабильное поддержание заданной температуры на всей площади нагревательного элемента способствует равномерному прогреву всей motherboard (зависит от модели подогревателя). И ещё одно из преимуществ перед другими термостолами, это удобная универсальная система креплений.

    Термостол СТМ 10-6

    Флюс для пайки bga

    На маркете представлено огромное количество производителей флюсов. В Bgacenter применяется широко распространенный FluxPlus. Следует обращать внимание на дату изготовления и срок годности флюса. Преимущества флюс-геля:

    • без отмывочный (многие мастера рекомендуют всё равно отмывать);
    • удобный дозатор, отсюда высокая точность дозирования во время паяльных работ;
    • не выделяет неприятных запахов;
    • обеспечивает хорошее растекание припоя по основному металлу, тем самым снижает поверхностное натяжение расплавленного припоя.

    Термовоздушная паяльная станция

    Назначение станции Quick 861DE ESD Lead – пайка (демонтаж и монтаж) BGA микросхем и SMD компонентов. Преимущества этой станции:

    • три режима памяти СН1, СН2, СН3;
    • высокая производительность “по воздуху”, Quick 861DE подойдет для пайки плат и телефонов и ноутбуков;
    • стабильность температуры.

    Что бы можно улучшить в конструкции станции, это регулировка температуры не кнопками, а вращающимися регуляторами, как на Quick 857D (W)+.

    Quick 861DE ESD Lead

    Паяльник для пайки

    PS-900 METCAL – индукционная паяльная система. Мощности паяльника 60 Вт вполне достаточно для работы с многослойными платами современной электроники. Опыт работы инженеров по ремонту телефонов именно с этим паяльником – 4 года. Какие отличительные особенности у PS-900:

    • нет необходимости в калибровке,
    • большой выбор наконечников,
    • надежность станции, расходным материалом является индуктор. При ежедневной интенсивной пайке, замена индуктора в среднем 1 раз в 10 месяцев.
    Читать еще:  Припой EcoBraze 38255 для пайки нержавеющей стали, меди, латуни

    Паяльник для пайки

    Микроскоп бинокулярный

    Для начинающего мастера по ремонту телефонов хорошим вариантом будет микроскоп СМ0745. Бинокулярный микроскоп с фокусным расстоянием 145 мм (при установке рассеивающей линзы Барлоу). Назначение системы линз, увеличение фокусного расстояния при сохранении рабочей зоны.

    • Плавное увеличение, достигается использованием кремальеры.
    • Линзовая система изготовлена из стекла, а не из пластика.
    • Возможность укомплектовать голову микроскопа разными столиками и штативами.
    • Увеличение до 45Х.

    Микроскоп для пайки плат

    Шарики bga

    Для пайки плат iPhone в основном применяются шарики припоя диаметр 0,2 мм. Обычно поставляются в стеклянной таре, по 10000 шаров в каждой банке.

    Состав шариков из припоя:

    • олово 63%,
    • свинец 37%.

    Качество пайки

    После выполнения паяльных работ необходимо убедиться, что пайка bga выполнена качественно. Контроль осуществляется несколькими способами:

    1. Визуальный.
    2. Измерительный.
    3. Включением устройства.
    4. Подключением к ноутбуку и проверке в 3uTools.

    Подробно о методиках проверки, читайте в следующем материале. Например при диагностике цепи заряда iPad Air, подключением платы к ЛБП, при исправном TRISTAR потребление тока должно быть не более 0,07 Ампер.

    Замена BGA. Горячий воздух или ИК лучи?

    Как меняется BGA чип. Чем паять? Горячий воздух или ИК лучи?

    Выбор паяльной станции

    Горячий воздух или ИК излучение?

    Вся современная электроника, и ее производство основано микросхемах. Вся вычислительная техника построена на чипах, выполненных в корпусах типа BGA.

    Что вообще такое BGA?

    BGA: Ball Grid Array — корпус PGA, в котором, вместо контактов штырькового типа используются шарики припоя. Такой тип микросхем предназначен для поверхностного монтажа. Распространен в мобильных процессорах, чипсетах, современных графических процессорах видеокарт компьютеров и ноутбуков. Корпуса BGA так же существуют в нескольких вариантах (видах).

    Обзор BGA ИК Станций за 2010 — 2011 год

    Итак, выводы этого типа микросхем имеют форму шариков и расположены снизу корпуса, благодаря чему, можно увеличить плотность монтажа (количество размещаемых элементов) на печатной плате. Работа с такими микросхемами требует особого подхода, сейчас поймете почему. Говоря о первичном монтаже (при производстве плат с такими чипами) должно соблюдаться точное совмещение контактов микросхемы с контактной площадкой на плате и равномерное запаивание всех контактов, путем равномерного прогрева. А в случае выпаивания (демонтажа) микросхемы, что опять же усложнено труднодоступностью выводов, нужно равномерный нагрев для отпаивания всех контактов. В обоих случаях должен быть четкий контроль качества процесса пайки.

    Руками сделать такую работу теоретически не возможно. Но на практике ремонтники умудряются паять их даже на бытовой газовой плите… Для удобства пайки и демонтажа микросхем типа BGA нужно специальное оборудование благодаря которому можно максимально оптимизировать весь процесс работы с монтажом и демонтажем BGA микросхем. Также все более популярной стала технология пайки с использованием без свинцовых припоев, а в этом случае вопрос соблюдения технологии качественной пайки занимает первое место.

    В чем разница пайки свинцовой и бессвинцовой?
    При бессвинцовой пайке температура нагрева требуется выше на 30-40 градусов, в отличии от традиционной пайки с использованиес свинец-содержащих припоев. И по этому максимально допустимая рабочая температура для компонентов поверхностного монтажа (SMD и BGA) находится в диапазоне от 250 до 260 градусов.

    Основная задача в процессе пайки это аккуратное и быстрое выпаивание элемента без повреждения соседних элементов критичных к перегреву.
    Предпочтителен инструмент, который сочетает в себе «низкую» температуру и высокую теплопередачу. При соблюдении всех условий демонтажа в большинстве случаев, невредимой сохраняется и отпаянная микросхема, это особенно полезно, в тех случаях, когда предположение о том, что она являлась причиной неисправности, опровергается.
    Теперь о том какие существуют способы нагрева микросхем для пайки и демонтажа.
    В локальной пайке и выпаиванию BGA чипов есть два варианта:

    Соответственно основанные на этих способах существуют и используются различные типы паяльных станций.
    Рассмотрим сначала термо воздушные паяльные станции.
    Термо-воздушные станции – устройство бесконтактной пайки, для нагрева паяемых компонентов используется открытый поток нагретого воздуха, который сфокусирован специальным соплом.

    Грубо говоря это фен. Так как принцип его работы аналогичен работе обычного фена для высушивания волос. Разница лишь в температуре потока воздуха исходящего из сопла фена. Температура воздуха на выходе такой паяльной станции регулируется от 100 до 480 градусов Цельсия. Еще имеется возможность коррекции воздушного потока.
    Термовоздушные станции пайки делятся на 2 способа подачи воздушного потока:

    В компрессорных, воздух подается работой диафрагменного компрессора расположенного в корпусе станции.
    У турбинных, же в блоке термофена встроен маленький почти бесшумный электрический двигатель с крыльчаткой, который создает нужную величину воздушного потока.
    Преимущества таких станций в их компактности, ими можно работать на рабочих местах малой площади.
    Особенностью BGA-компонентов является расположение контактов, их выводы, представляющие из себя контактные площадки с шариками припоя, находящиеся под корпусом устанавливаемого на плату компонента, эти контакты недоступны для традиционных паяльных устройств. Поэтому напайка этих компонентов осуществляется сквозным прогревом корпуса.
    Разумеется, верхняя часть корпуса микросхему прогревается быстрее, чем шариковые выводы, так как они контактируют с платой, это и затрудняет их нагревание.

    Бесконтактная пайка BGA-компонентов на поверхность печатной платы потоком горячего воздуха — процесс эмпирический. Температура воздуха места пайки регулируется двумя основными параметрами: выставленной температурой нагревателя, через который проходит воздух, и скоростью воздушного потока. Интересный факт в том что реальная температура потока воздуха из сопла выставляется приблизительно.

    Расстояние от сопла до компонента припаиваемого к плате тоже весьма критично. Если Увеличение скорости потока воздуха снижает рассеивание воздуха на выходе из сопла, но требует повышения температуры нагревателя, это понятно, ведь высокая скорость прохождения потока воздуха через нагревательный элемент снижает разогрев воздуха, иными словами он просто не успевает нагреться до нужной температуры.
    Из за неточности размеров сопел, особенно в головках для микросхем с большим количеством контактов, подвод тепла к месту пайки происходит не равномерный. Что ведет к увеличению опасности «термотравмы» компонента и печатных проводников на плате.
    Различные конструкции паяльных станций для пайки и демонтажа горячим воздухом предполагают различные степени и способы контроля параметров термо инструментов — температуры воздуха, нагнетаемого в сопло фена и его количества, подаваемого в единицу времени.

    У самых примитивных моделей нет обратной связи и можно лишь визуально наблюдать за поведением припоя в рабочем пространстве, и иметь представление о тепловой картине места пайки, глядя на положение регуляторов нагревательного прибора. Зато эти стации достаточно дешевые, спектр их применения ограничен. Основное их предназначение это демонтажные операции, в которых не требуется идеально точного соблюдения термо режима. Станции имеющие четкий контроль и стабилизацию температуры самые дорогие в своем классе. Они также имеют индикацию в реальном времени температуры воздуха на выходе фена, имеют индикатор давления воздушного потока.
    Теперь рассмотрим следующий вид станций это инфракрасные паяльные станции.
    Они основаны на излучении инфракрасных волн от нагревательного элемента, вместо потока горячего воздуха.

    Механизмом генерации тепла, используемым ИК станциях, является излучение. ИК-волны диапазона 2-8мкм, лучшее в смысле соотношения отражаемой и поглощаемой тепловой энергии: видимые ИК волны не пригожи для процесса пайки, так как они перегревают темные поверхностей и не прогревают блестящие выводы микросхем.
    На таких станциях можно выполнять операции пайки и демонтажа компонентов, имеющих размеры от 10мм до 60мм. Среди них микросхемы в корпусах различного типа BGA, CSP, PGA, SOIC, QFP, PLC. Можно также ее использовать для локальной пайки группы компонентов на ограниченном участке монтажной платы. Размеры прямоугольной зоны нагрева задаются органами регулировки окна верхнего излучателя.
    В принципе, оба способа: термовоздушный и ИК, имеют корни из технологий групповой пайки в печах плавления. Но при задачах ремонтной (локальной) пайки совершенно иная потребность. Если в случае с печью, которая должна обеспечить равномерный нагрев по всей поверхности платы, то ремонтная станция — только в отдельной области платы, при этом не подвергать соседние элементы термическому воздействию.
    Лучшим решением для локальных ремонтных работ особенно с BGA, предпочтительна именно инфракрасная технология.
    В местах первичного контакта струи воздуха с плоскостью, температура выше, чем зонах оттока «отработавшего» воздуха. Чтобы снижать завихрения, приходится замедлять поток воздуха, но это приводит к недостаточному переносу тепла: ведь неподвижный воздух является теплоизолятором!
    Достаточно рассмотреть эти термограммы, это пятна нагрева плоскости корпуса BGA.

    Горячий воздух сопло2 Горячий воздух сопло1 ИК-излучатели

    ИК излучение имеет большее преимущество перед воздухом, так как это единственный механизм теплопередачи, который позволяет передавать тепловую энергию по всей площади монтируемой микросхемы.
    Так как равномерный прогрев больших корпусов BGA воздушным потоком крайне затруднителен, для проведения ремонтной пайки, рекомендуется использовать именно инфракрасные станции.
    Главные достоинства технологии инфракрасной пайки:
    • равномерный локальный нагрева (самый критичный фактор для BGA)
    • отсутствие вероятности сдуть с печатной платы демонтируемый компонент
    • нет потребности в приобретении сменных профильных насадок для фена под определенные размеры чипов
    • возможна работа компонентами сложного профиля
    У многих возникает вопрос: не происходит ли перегрев инфракрасным излучением темных поверхностей BGA микросхем? и хватает ли его тепловой энергии для оплавления припоя светлых выводов микросхем QFP? Нелепо утверждать, что нет разницы в нагреве. Разница есть, но при длине волны 2…8 мкм которая является минимальной в инфра красном — диапазоне, за счет чего и обеспечивается достаточная для качественной пайки равномерность нагрева поверхностей имеющей различную отражающую способность.
    Какую выбрать паяльную станцию? Термо воздушную или инфра красную?
    Все зависит от Ваших потребностей, что Вам нужно на ней делать. Ремонтировать материнские платы от ноутбуков, или компьютерные материнские платы, а может платы мобильных телефонов. В общем, с платами от мобильников все имеющиеся на рынке паяльные станции от китайских производителей с разной степенью, но справляются. Станции одной ценовой категории, почти идентичны и нелепо обсуждать какая из них лучше, какая хуже. Ремонт материнских плат гораздо удобней производить на инфракрасной паяльной станции. Потому что на таких платах стоят микросхемы больших размеров требующих значительного и главное равномерного прогрева по всей площади.
    Соответственно цена инфракрасных станций в разы дороже по сравнению, с термовоздушными.

    SamsPcbGuide, часть 10: Технологии — пайка бессвинцовых компонентов

    Данная статья – первая статья о технологиях сборки печатных плат. Последний семинар от PCB SOFT был посвящён проектированию, обеспечивающему технологичность изготовления печатной платы (англ. DFM, design for manufacture). Был поднят вопрос о целесообразности реболлинга бессвинцовых BGA-компонентов для высоконадёжных применений. И организаторы семинара, и участники уверенно говорили о том, что эту трудоёмкую операцию никто не выполняет и с проблемами никогда не сталкивался. В данной статье я критически рассмотрю этот вопрос и постараюсь показать опасность таких «общепринятых в отрасли» мнений и о пользе метода универсального сомнения старины Рене Декарта.

    В 2006 году была принята директива RoHS, ограничивающая применение свинца и других признанных вредными элементов в потребительской и промышленной электронике. Это привело к тому, что большинство производителей электронных компонентов перешло на бессвинцовые корпуса, а заказ компонентов в исполнении со свинцовосодержащими выводами не всегда доступен. При этом технология пайки с применением припоев с высоким содержанием свинца никуда не делась (в ГОСТ Р 56427-2015 она, к слову, названа традиционной). Выбор припоя и/или паяльной пасты остаётся за разработчиком печатной платы, поэтому, если выбор сделан в пользу свинцовосодержащего припоя, возникает проблема пайки бессвинцовых компонентов (англ. mixed-alloy process), особенно в корпусах BGA-типа (соразмерность долей припоев). Основной вопрос заключается во влиянии смешения припоев на надёжность соединения. Вышеуказанный ГОСТ даёт однозначный ответ:

    Для РЭС класса С по ГОСТ Р МЭК 61191-1-2010 недопустим отказ, аппаратура должна функционировать в любое время включения, в том числе в жёстких условиях. Эти требования относятся не только в аппаратуре военного и космического применения, надёжными должны быть, например, и ответственные промышленные системы.

    Откуда в ГОСТе возникло такое требование? Это вопрос к разработчикам стандарта, которые, скорее всего, перевели зарубежный стандарт, которому, вероятно, уже 5-10 лет, а откуда требование возникло там, вообще не разобраться. И при этом участники семинара, о котором я писал в начале, представляющие срез отечественной электроники именно ответственного применения, отрицательно качали головой головой при слове «реболлинг». Возможно, у них есть положительный опыт, я не спорю, я просто против обобщений и уверенности, базирующихся на невежстве. Кто их них (и из вас, читатели) читал стандарт? А те, кто следуют стандарту, уверены, что данная операция в техпроцессе обязательна в их конкретном случае? Сама операция не снижает надёжность? Кто проводил экспериментальное исследование надёжности используемой технологии поверхностного монтажа? Потому что всё дело в эксперименте, в правильно поставленном эксперименте. Другой источник информации – анализ доступных данных от сторонних исследователей. Ниже я приведу обобщение нескольких статей на тему надёжности пайки бессвинцовых компонентов.

    Температура плавления (ликвидус, TL) бессвинцовых припоев на 30-40 o C выше, чем свинцовосодержащих, поэтому, в зависимости от термопрофиля пайки и распределения теплового поля на печатной плате, можно получить различную степень смешивания в паяном соединении (рис. 1). Наличие зон концентрации и неоднородностей как самих металлов, так и интерметаллидов в припойном соединении (рис. 2) снижает его долговременную надёжность, так как такие макроструктуры являются наиболее вероятными местами образования и распространения трещин (особенно при низких температурах). Хотя в большинстве статей из списка литературы приводится анализ микрофотографий сечения соединений, единой теории причины образования трещин не прослеживается.

    В таблице 1 представлены сводные результаты исследовательских работ, в основе которых лежал следующий типовой эксперимент: для фиксированного сочетания припоев BGA-компоненты (в некоторых экспериментах это нефункциональный макет компонента, в котором есть только межсоединения выводов для построения последовательной цепи), запаянные при различных термопрофилях, термоциклировались до возникновения функционального сбоя или неконтактирования. Также исследовалась зависимость от размера корпуса, в ряде работ изучалось влияние расположения компонента на печатной плате, влияние адгезива типа «underfill», финишного покрытия печатной платы и др.

    В статьях нет явных указаний, выполнялся ли реболлинг BGA-компонентов для получения свинцовосодержащих шариков, но пониженные значения надёжности для этих случаев позволяет предположить, что реболлинг может приводить к снижению надёжности. В статье, посвящённой реболлингу [8], сообщается о положительных результатах термоциклирования, однако заявленная продолжительность эксперимента в 24 часа не могла обеспечить достаточного количества циклов. Поэтому вопрос снижения надёжности в результате реболлинга остаётся открытым, а в качестве базового сценария рекомендуется смешанная пайка с экспериментальным подбором термопрофиля.

    Призываю отнестись к представленным данным с универсальным сомнением и поделиться в комментариях своим экспериментальным опытом.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector