Bktp-omsk.ru

Делаем сами
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кислородно копьевая резка

КИСЛОРОДНО-ФЛЮСОВАЯ КОПЬЕВАЯ РЕЗКА

Кислородно-флюсовое копье

Кислородно-флюсовая пробивка отверстий является совокупностью обычной техники кислородной пробивки с кислородно-флюсовым процессом; этот способ отличается от кислородно-флюсовой разделительной резки, тем что резак заменен специальным держателем, снабженным тонкостенной трубкой из малоуглеродистой стали соответствующей длины, через которую подают кислород и флюс, и используется для сверления и резки таких материалов и изделий, обработка которых ранее из-за их размера и жароустойчивости считалась невозможной или неэкономичной.

Для осуществления этого процесса необходимы кислород высокого давления, сжатый воздух или азот, трубчатое копье, флюсопитатель, копьедержатель, редуктор и шланги.

Флюсопитатели служат для подачи флюса в режущую струю. Азот или воздух от баллона или компрессора по шлангу поступает на вход редуктора, который установлен на флюсопитателе. Нажимным винтом редуктора устанавливается рабочее давление во флюсопитателе в пределах 0,5 — 1,0 кгссм 2 , которое контролируется по манометру на редукторе. С выхода редуктора флюсонесущий газ подается под уплотнительную крышку бачка, создавая давление над порошком, и в циклонную камеру. Из циклонной камеры смесь флюсонесущего газа и порошка через выходной штуцер и рукав поступает в копьедержатель, а затем через копье в зону пробивки отверстий или реза.
Количество флюса, подаваемого в копьедержатель, определяется величиной давления в бачке и зазором в циклонной камере.

Копьедержатель состоит из держателя трубы с фиксирующими винтами, смесителя, инжектора, корпуса с вентилями подачи.

В качестве копья рекомендуется применять трубу по ГОСТ 3262 или ГОСТ 8734 с наружным диаметром 16 мм, длиной от 3 до 6 м. Длина трубы зависит от местных условий работы. При необходимости изготовления очень глубоких отверстий можно одновременно работать двумя или несколькими трубками. кислорода и флюса, плотнительных колец, штуцеров подачи кислорода и порошка, клапана с разрывной мембраны.

Практика резки кислородно-флюсовым копьем

Для начала пробивки отверстий необходимо нагреть выходной конец трубы газовой горелкой или резаком до температуры воспламенения. Предварительный подогрев места начала реза не требуется. Конец трубки копья должен находиться на расстоянии 50-150 мм от поверхности обрабатываемого изделия. При меньшем расстоянии увеличивается интенсивность сгорания трубки. Расплавленный металл вытекает из отверстия в виде жидкотекучего шлака. При горизонтальном сверлении рекомендуется пробивать отверстие и держать копье под углом 5-10 0 , чтобы облегчить вытекание шлака. Кислородно-флюсовым копьем производят разделительную резку, перемещая его конец с одной стороны изделия на другую.

Кислородно-флюсовая пробивка отверстий копьем в металлургической промышленности

Обработка копьем отливок большого сечения

При помощи кислородно-флюсового копья можно удалять прибыли и литники с отливок из нержавеющей и малоуглеродистой сталей. Применяя копье, с поверхности отливок можно удалять песочины и другие дефекты.

Удаление из печи «козлов»

«Козлами» обычно называют остатки железа и стали в шлаковых камерах открытых мартеновских печей, металла и шлака в доменных, электрических печах и т.д. Эти «козлы» постепенно увеличиваются, и их нужно регулярно удалять из печи. Часто в их состав входят жаропрочные шлаки и цемент. Удаляют «козлы» с помощью кислородно-флюсовой резки копьем.

Пробивка леток в печах

Летки в доменных и сталеплавильных печах могут быть вскрыты в минимальное время кислородно-флюсовым копьем. Трубку копья для облегчения работы сгибают по плавной кривой. Такая форма не снижает эффективности копья. Давление кислорода обычно поддерживают приблизительно до 7 кгс/см 2 .

Пробивка копьем жаропрочных материалов
Кислородно-флюсовая резка применяется для разделения или сверления бетона и других жаропрочных материалов, особенно в тех случаях, когда не допускается шума и вибраций, вызываемых пневматическим инструментом и обычным сверлением. Для повышения температуры и мощности пламени обычно смешивают железный и алюминиевый порошки. Процесс при этом протекает медленнее, чем, например, пробивка чугуна, но кислорода и флюса расходуется больше. Расход жаростойких материалов при резке копьем изменяется в широких пределах в зависимости от состава материала и условий работы.

Технологии резки

В процессе резки происходит разделение исходного материала (например, стального листа) на части или получение из него деталей определенной формы. Способы обработки материалов подразделяются на две основные группы:

  • с механическим воздействием – разрезание ножницами, распиливание, сверление, фрезерование, штамповка и др.;
  • с воздействием струи или термическим воздействием.

Способы резки, относящиеся ко второй группе, можно разделить на следующие виды:

  1. Газовая резка
    • кислородная;
    • кислородно-флюсовая;
    • резка кислородным копьем
  2. Газоэлектрическая резка
    • воздушно-дуговая;
    • кислородно-дуговая
  3. Резка методом электрической эрозии
  4. Плазменная резка
    • плазменно-дуговая;
    • резка плазменной струей
  5. Лазерная или газолазерная резка
  6. Кислородная резка с поддержкой лазерным лучом
  7. Гидро- и гидроабразивная резка
  8. Криогенная резка

Первые шесть видов также называют термическими способами резки.

В способах газовой резки источником нагрева металла является газовое (кислородное) пламя, а источники электрической энергии не используются. При кислородной резке металл удаляется из зоны реза в результате его сгорания в струе чистого кислорода и выдувания этой струей образовавшихся оксидов.

При кислородно-флюсовой резке в область реза подается специальный порошок-флюс, облегчающий процесс резки за счет термического, химического и абразивного воздействия. При кислородно-копьевой резке необходимая температура создается в результате сгорания металлического копья (трубы), через которое продувается струя кислорода.

В способах газоэлектрической резки нагрев и плавление металла выполняются источником электрической энергии, а удаление расплава из зоны реза – газовой струей.

Технология обработки методом электрической эрозии основана на разрушении поверхностных слоев металла в результате внешнего воздействия электрических зарядов.

При плазменно-дуговой резке электропроводный материал плавится за счет теплоты плазменной дуги и струи, и выносится последней из области реза. При резке плазменной струей дуга имеет косвенное действие, и материал может быть неэлектропроводным. Его плавление и удаление расплава из зоны реза осуществляется высокоскоростной плазменной струей.

Газолазерная резка заключается в нагреве и разрушении материала лазерным лучом с удалением расплава струей вспомогательного газа. Для ряда материалов в качестве вспомогательного газа применяется кислород, поддерживающий горение материала. В результате реакции окисления выделяется дополнительная теплота, усиливающая действие лазерного луча.

Лазерный луч может использоваться только для нагрева участка поверхности металла до температуры примерно 1000°С, при которой начинается процесс окисления металла, а затем на участок поверхности подается сверхзвуковая струя чистого кислорода. Такой способ получил название кислородной резки с поддержкой лазерным лучом (LASOX).

При гидрорезке (водоструйной резке) разрушение материала происходит под действием тонкой высокоскоростной струи воды. Ее скорость может превышать скорость звука в разы. При гидроабразивной резке в струю воды добавляются частицы абразива (высокотвердого материала, применяющегося для обработки изделий), что увеличивает ее разрушительную силу.

Одной из весьма перспективных технологий обработки материалов в будущем считается криогенная резка. Струя жидкого азота («криогенный нож») с температурой от -150°С до -179°С, испускаемая под давлением от сотен до тысяч атмосфер, способна разрезать даже прочные материалы.

Каждая технология резки имеет свои преимущества, недостатки и оптимальную область применения.

Таблица. Сравнительная характеристика кислородной, плазменной, лазерной и гидроабразивной резки

Область применения и методы газовой резки по бетону

Рисунок 1 — Газовая резка

Конструкции и изделия из бетона/железобетона, так же, как и металлические аналоги, подвергаются дополнительной обработке: выполняется подгонка под определенные размеры, делаются проемы под окна и двери, отверстия в стенах под трубы и коммуникации. Для этих целей применяется кислородно-флюсовая газовая резка.

Хорошие показатели при выполнении такой работы дает флюс с высокой тепловой эффективностью, в состав которого входят железный и алюминиевый порошки в сочетании 75-85% и 15-25% соответственно.

Принцип работы

В процессе резки газовым резаком происходит следующее: разогретый металл сжигается в струе кислорода, который нагнетается под давлением. Предварительно, сплав разогревают до необходимой температуры, при помощи специальной горящей смеси ацетилена с кислородом. Такой способ резки, кислородно-ацетиленовым резаком, применяется практически ко всем маркам металла (кроме нержавейки, цветных металлов и сплавов). Для газовой резки железобетонных изделий используют другой метод.

Кислородно-флюсовая резка

Метод заключается в следующем: в зону реза струей сжатого воздуха (например кислорода или азота) вдувается флюс (вещество, содействующее образованию шлака и улучшению качества металла при плавке) на основе порошка из железа, который выделяет при сгорании дополнительное количество теплоты, снижает концентрацию входящих в материал примесей и разжижает шлак.

При кислородно-флюсовой резке воспламенение флюса начинается над поверхностью разрезаемого материала, а полное сгорание происходит в полости реза. На практике это расстояние выбирается в зависимости от разрезаемого материала и колеблется в пределах от 15 до 50 мм.

С помощью специальной техники разрезаются железобетонные конструкции толщиной от 90 до 300 мм. При этом скорость прохода составляет 100 мм в минуту. Для образования хорошего струйного потока применяются сопла имеющие форму цилиндра и конуса суженную к выходу. Для резки толстых железобетонных конструкций используют метод кислородно-копьевой резки.

Кислородно-копьевая резка

Более продуктивным способом газовой резки по бетону является порошковое копье, с помощью которого работы можно проводить на конструкциях толщиной от 100 до 2000 мм. Порошковое копье имеет свойства обычного кислородного копья, которое предназначено для глубокого проникновения в материал, и свойства кислородно-флюсовой резки.

Рисунок 2 — Схема кислородно-копьевой резки

Принцип заключается в следующем: с помощью специальной автоматизированной трубки в место реза подается смесь железного и алюминиевого порошка, сгорание которого выделяет дополнительное тепло. Что бы кислородное копье длиной 3000 — 6000 мм подавало кислород к месту прожигания отверстия, используют специальную установку УФР-5.

В устройстве применяется толстостенная металлическая труба из стали наибольшим диаметром 20 — 35 мм заполненная на 60—65 % стальными прутками или тон­костенную газовая труба того же диаметра, обмотанная снаружи стальной проволокой диаметром 3—4 мм, через которую подается кислород, участвующий не только в горении, но и в выдувании продуктов, образовавшихся в результате сгорания.

Зная толщину конструкции можно просчитать количество затраченных на резку ресурсов исходя из данных таблицы 1.

Таблица 1 — Режимы кислородно-флюсового прожигания отверстий в железобетоне

Глубина, ммДиаметр прожигаемого отверстия, ммРасход флюса, кг/чДавление кислорода, кг*с/ см. квРасход кислорода, м. куб /чРасход стальной трубки, м/м длинны отверстияДиаметр копья, дюймыСкорость прожигания, мм/мин
До 50050 — 55306 — 760 — 8043/8120 — 180
500 — 100055 — 60308 — 1080 — 1004 — 53/880 — 120
1000 — 150060 — 703010 — 12100 — 1205 — 63/840 — 80
Читать еще:  Чем резать утеплитель из минеральной ваты

Резак УФР-5

УФР-5 используется как в ручной, так и в машинной кислородно-флюсовой резке. Так же его используют в кислородно-копьевой (порошковой) резке для точечного прожигания отверстий в материалах.

Рисунок 3 — Схема работы установки УФР-5

Пояснение к рисунку 3:

  1. Копьедержатель.
  2. Флюсопитатель.
  3. Ручной резак.
  4. Машинный резак.

Топливом служит пропан или бутан в сочетании с кислородом. Инжектор подает флюс из бачка струей режущего кислорода. В режущей зоне он создает тройное воздействие:

  • термическое;
  • химическое (в резе образуются жидкотекучие шлаки — их удаление осуществляется струей кислорода);
  • абразивное (не сгоревшие частицы порошка и тугоплавкие окислы с поверхности кромок стираются, а после удаляются полностью).

Рисунок 4- Установка кислородно-флюсовой резки УФР-5

Пояснение к рисунку 4:

  1. Тележка.
  2. Циклон.
  3. Флюсопитатель.
  4. Редуктор кислорода.
  5. Резак.
  6. Шланги.

В таблице 2 указаны скорость обработки бетона и расход материала при различных методах резки.

Таблица 2 — Скорость обработки бетона и расход материала в зависимости от способа резки

Способ резкиСкорость обработки бетона см. куб/минРасход материала на 1 куб. дм удаляемого бетона
труб, кгкислорода, м. кубфлюса, кг
Кислородно-флюсовая1005,54,5
Кислородно-копьевая3000,52,52,5

Дополнительное оборудование для работы

Рисунок 5 — Работа с газовым резаком

При работе с газовым резаком, потребуется следующее комплектующее:

  1. Огнетушитель.
  2. Защитное обмундирование (толстые кожаные перчатки, рабочая крепкая обувь с толстой кожаной подошвой, специальные очки или маска).
  3. Соответственная одежда (комбинезон стойкий к брызгам расплавленного металла, за неимением, можно использовать хорошо облегающую хлопчатобумажную одежду. Запрещено одевать вещи из синтетических и легковоспламеняющихся тканей, рваных и сильно изношенных по краям).
  4. Инструменты для замеров (линейка, угольник и карандаш-мелок из мыльного камня).
  5. Специализированная зажигалка для газового резака (запрещено использовать спички и зажигалки из-за соображений безопасности).

По спецодежде есть ГОСТ Р ИСО 11611 — 2011, просмотреть его можно по ссылке.

Стоимость услуг железобетонной резки

Цена на разрезание бетонных и железобетонных конструкций зависит от расходуемого количества кислорода и флюса, на которое непосредственно влияет толщина изделия.

Стоимость аппаратуры дорогая, поэтому, если работа единичная, лучше договорится с резчиками о выполнении работ и цене индивидуально. В среднем цена составляет 100 рублей за 1 метр.

Видео

На видео показан процесс кислородно-копьевой резки. С помощью специальной установки, резчик прожигает точечное отверстие в толстом слое железобетонной конструкции.

Вывод

Газовая резка по бетону делится на:

  • кислородно-флюсовую с резом конструкции толщиной до 300 мм и скоростью прохода до 180 мм в минуту;
  • кислородно-копьевую (порошковую) с резом конструкции толщиной до 2000 мм и скоростью прохода не более 40 мм в минуту.

На территории СНГ широко используется резак УФР-5. Не забывайте использовать спецодежду описанную в ГОСТ Р ИСО 11611 — 2011.

Кислородно копьевая резка

Цветные металлы и их сплавы, чугуны, нержавеющие хромистые и хромоникелевые стали невозможно разрезать обычной газокислородной резкой. Для этого надо использовать плазменно-дуговую, а лучше кислородно-флюсовую резку-Сущность последней состоит в том, что в зону резания с помощью специальной аппаратуры непрерывно поступает порошкообразный флюс совместно с режущим кислородом. Флюс сгорает и расплавляет образующиеся тугоплавкие оксиды-Кроме того, флюс переводит оксиды в жидкотекучие шлаки, легко вытекающие из места разреза.

Рис. 133. Положение инструмента при резке металла большой толщины: а — перед началом резки; б — перед окончанием резки

Данная резка применяется, главным образом, для работы с чугуном и высоколегированными сталями толщиной до 70 мм.

В качестве флюса применяется мелкогранулированный железный порошок марки ПЖ5М (ГОСТ 9849-74) с размерами частиц от 0,07 до 0,16 мм (используется для резки чугуна и меди). Для резки нержавеющих сталей к указанному порошку добавляют 10-12% алюминиевого порошка марки АПВ. Можно использовать и алюминиево-магниевый порошок (60-80%) в смеси с ферросилицием (20-40%). При резке хромистых и хромонике-левых сталей используется железный порошок ПЖ5М с добавкой 25-50% окалины. При резке чугуна можно добавить к этому порошку 30-35% доменного феррофосфора. Смесь железного порошка с алюминиевым порошком (15-20%) и феррофосфором U0-15%) применяется при резке меди и ее сплавов.

Данная резка осуществляется установкой УРХС-5, состоящей из резака и флюсопитателя Установка может разрезать ручным или машинным способом высоколегированные хромоникелевые и хромистые стали толщиной 10-200 мм при скорости резания 230-760 мм/мин. На 1 м разреза расход кислорода составляет 0,20-2,75 м3, ацетилена — 0,017-0,130 м3 и флюса — 0,20-1,3 кг. Чугун толщиной 50 мм режется со скоростью 70-100 мм/мин при расходе на 1 м разреза 2-4 м3 кислорода, 0,16-0,25 м3 ацетилена и 3,5-6 кг флюса. При резке сплавов меди получают приблизительно такие же параметры.

Следует учитывать, что мощность подогревающего пламени нужно повысить на 15-25% по сравнению с обычной газовой резкой, так как определенная часть теплоты этого пламени будет уходить на нагревание флюса. Пламя должно быть нормальным или с незначительным избытком ацетилена. От торца мундштука резака до поверхности металла должно быть расстояние в 15-25 мм. При малом расстоянии возможны хлопки и обратные удары пламени из-за отскакивания частиц флюса от поверхности и попадания их в сопло резака. Кроме того, может быть перегрев мундштука и вследствие этого нарушение процесса резки. Угол наклона инструмента следует сделать в 1-10° в сторону, обратную направлению к резки. Для облегчения процесса резки сплавы меди нужно предварительно подогревать до 200-50 “С, а хромистые и хромоникелевые стали — до 300-400 °С.

На практике довольно часто производится резка бетона и железобетона. Она выполняется 2 способами: кислородно-копьевой и порошково-копьевой резками.

Кислородно-копьевая резка очень хорошо прожигает отверстия в бетоне. Она позволяет получить отверстия глубиной до 4 м при диаметре до 1,2 м. Этой резкой можно с успехом прижигать отверстия в стальной заготовке.

При данном способе используется стальная труба (копье), один конец которой разогревается до температуры оплавления и приставляется к поверхности бетона. Через копье продувается кислород, который, взаимодействуя с раскаленным торцом трубы восстанавливается. При этом возникают жидкотекучие оксиды железа, реагирующие с бетоном и превращающиеся в шлаки, которые затем легко выдуваются. Продвигая трубу вперед, можно прожечь требуемое отверстие в бетоне.

В качестве копья можно использовать газовую тонкостенную трубу диаметром 10-20 мм, заполненную стальными прутками на 60-65% ее объема или обмотанную снаружи стальной проволокой диаметром 3-4 мм, а также цельнотянутую толстостенную трубу диаметром 20-35 мм. Проволока и прутки выполняют при такой резке ту же функцию, что и флюс при кислородно-флюсовой резке. Копье нагревается, как правило, угольным электродом или горелкой.

Порошково-копьевая резка характеризуется тем, что при ней используется железо-алюминиевый порошок в соотношении 85 : 25. Как и флюс, этот порошок вдувается струей кислорода в зону резания. Параметры выполняемой работы при этом могут быть следующими. Так, например, при прожигании отверстия диаметром 50 мм и глубиной 500 мм, скорость продвижения составит 120—160 мм/мин при давлении кислорода 0,7 МПа, расходе порошка 30 кг/ч и расходе копья (трубы) 4 мм на каждый метр длины отверстия.

При глубине отверстия 1,5 м и том же диаметре скорость углубления уменьшится до 40-70 мм/мин при давлении кислорода 1,0-1,2 МПа, расходе флюса 30 кг/ч и расходе копья 6 мм на 1 м длины отверстия.

Поверхностная резка — разновидность кислородной резки. Она предназначена для вырезания на поверхности металла рельефа в виде одной или нескольких, раздельных или совмещенных канавок. В сварочных работах эта резка часто используется для вырезки дефектных участков швов. При данной Резке источником нагрева металла будет являться и пламя резака, и расплавленный шлак, который при своем растекании подогревает глубоколежащие слои металла.

Для этого вида работ хорошо подходят резаки типа РПА и РПК. Режим резки и угол наклона инструмента играют важную роль в эффективности поверхностной резки.

На начальном этапе нужно прогреть область разреза д температуры воспламенения. Резак следует располагать пр этом под углом 70-80° к поверхности металла. Перед подаче режущего кислорода инструменту необходимо придать на клонное положение под углом 15-45”. В процессе резки возни кает очаговое горение металла; тем самым обеспечиваете эффективная зачистка металлической поверхности, в том чи . ле и за счет равномерного продвижения инструмента по ли нии намечаемого разреза.

Резка проемов в Казани

Проведем резку проемов где угодно: в несущих стенах, для дверей, в кирпичных стенах! 5 лет опыта, более 300 объектов сделано!

С НАМИ УЖЕ РАБОТАЮТ

Как мы работаем

Почему надо выбрать нас?

С помощью спец оборудования работа займет от 10 минут до пары часов

Без трещин и динамических нагрузок

Наше оборудование не дает динамических нагрузок, а значит в бетоне не будет трещин

Наше спец оборудование позволяет сделать идеально ровную поверхность, без последующей обработки

Чисто и без пыли

3Вся пыль собирается в специальные мешки при оборудовании

Шум при алмазном бурении составляет не более 83 дб!

5 лет опыта, более 300 сделанных обьектов по всей России!,

Выезд от 5000 рублей

Приедем к вам уже завтра!

Подробности о резка проемов

овременная жизнь сопряжена со стремлением к переменам, переоснащению, переоборудованию, перепланированию. А где перепланировка, там резка проемов, пробивка бетонных стен. Благо затеям способствует наличие соответствующего снаряжения, оборудования, инструментария.

Резка и ее виды

Быстро вырезать проем нужной величины с наименьшими затратами сил вполне реально. Ровное, красивое отверстие без трещин и деформирования конструкции можно вырезать несколькими способами:

• гидроабразивная или холодная резка бетона;

• кислородно — копьевая разновидность.

Так называемая алмазная резка — это наиболее популярная и безопасная методика работы с бетонированными сооружениями, срезанное место получается строго по линиям разметки. Шумовой порог при работе не превышает требований санитарии. Мусор практически отсутствует, появление пыли минимальное. Недостатком метода является высокий энергетический расход, финансовые затраты на приобретение алмазных режущих кругов.

Читать еще:  Оборудование для резки пенополистирола

Популярен способ холодной резки (гидроабразивный). Суть метода в действии струи воды вперемежку с песком под высоким давлением. Получается точный и аккуратный срез без выделения опасных для здоровья испарений. Шумовой порог низкий, проему можно придать любую форму. Недостаток – громоздкость установки, не предназначен для жилых помещений.

Проем можно сделать с помощью толстостенной трубы из металла, закачанной кислородом (кислородно-копьевой способ). Труба-копье разогревается сваркой или горелкой до температуры 1400*С. Когда копье загорается, источник тепла удаляется. Труба разгорается до 2000*, начинается резание бетона. Для эффективности трубку нужно вращать, как при сверлении.

Нетолстые бетонные изделия можно разрезать универсальной машинкой болгаркой. Круги нужны диаметром 105мм-125мм. Используются профессиональные гидравлические пилы, электрорезчики.

Просверлить отверстие, изменить дверной или оконный проем при наличии современных технологий возможно на любой железобетонной поверхности. При работе с режущими приспособлениями важно соблюдать меры предосторожности для сохранения своего здоровья. Перчатки, очки, респиратор – незаменимые, необходимые принадлежности. Бетонная пыль вредна для органов дыхания, респиратор защищает от попадания грязи в легкие. Глаза защищают очки, руки – перчатки. Пренебрегать мерами безопасности не стоит.

Цены на резку проемов

Мы бурим везде, в квартирах, частных домах, банях. Даем лучшую стоимость за квадратный метр! Лучше позвоните нам и мы дадим вам точную цену!

Если вы хотите знать начальные цены — то они самые маленькие на рынке

Наши цены начинаются от 5000 рублей за выезд!

Позвоните нам по телефону, мы предоставим вам минимальную цену на рынке.

ОТЗЫВЫ НАШИХ КЛИЕНТОВ

СБурение выполнили просто на 5+. Бувально один день и все готово!

Волков Д. А.
ООО «АльпинСтрой»

Заказывал бурение отверстий для проводки. Выполнено идеально!

Степанов А.П.
ООО «Орг Пушкино”

Работаем постоянно на всех обьектах. Никогда не подводят!

Бродский А.В.
Инженер «СтройСервисГрупп»

Вчера позвонили, а сегодня уже готово. Не думал, что это возможно!

Вовконский Л.К.
Окна Века

С нами уже работают

Позвоните нам сегодня,

Адрес
г. Казань, улица Зинина, 3А

Телефон
8 (495) 178-01-16

Кислородно-флюсовая копьевая резка

Раскрой чугуна, сталей с большим содержанием легирующих элементов, цветных металлов и сплавов выполняют преимущественно плазменно-дуговым способом. Но как быть, если они имеют слишком большую толщину и порезка данным методом невозможна? В таких случаях применяется резка кислородно-флюсовым копьем.

Отличительные особенности процесса

Популярность резки кислородно-флюсовым копьем толстостенных материалов обусловлена присутствием в процессе порошкообразных флюсов. При подаче совместно с кислородом они позволяют переплавить тугоплавкие окислы в жидкотекучие шлаки, которые впоследствии легко удаляются с места реза под воздействием высокого давления кислорода.

Частицы порошка сразу не сгорают, а попадают в глубину реза. Под воздействием ударного трения, которое они создают, с поверхности кромок удаляются тугоплавкие оксиды.

Конец копья перед резкой подвергается предварительному подогреву любым возможным способом (газовым пламенем, газокислородной горелкой) до температуры воспламенения в кислороде, подачу которого включают и регулируют на рукоятке.

От традиционного кислородного способа кислородно-флюсовый отличается следующими параметрами:

  • Увеличенная мощность пламени для подогрева (в пределах 15-20 %) с целью равномерного нагрева частиц флюса до их воспламенения. В противном случае железный порошок будет воспламеняться на большом расстоянии от мундштука и не полностью сгорать, что ведет к неустойчивому процессу резки кислородным копьем.
  • Большее расстояние от торца мундштука к поверхности разрезаемого материала для предупреждения его закупорки – около 15-60 мм в зависимости от толщины материала и используемого оборудования. Это снижает вероятность хлопков, которые являются результатом отскакивания флюса от поверхности металла, а также закупорки выходных отверстий резака.
  • Скорость процесса в обязательном порядке подбирается с учетом расхода флюса.
  • Большее сечение каналов для подачи режущего кислорода.

Оборудование для кислородно-флюсовой резки

Аппараты состоят из нескольких основных узлов:

  • резак;
  • кислородное копье;
  • флюсопитатель;
  • приспособление для подвода флюса.

Флюс может подаваться в резак по следующим схемам:

  1. Механическая – подача осуществляется при помощи шнека с электромеханическим приводом, установленного внизу емкости. Флюс захватывается ним и по шлангу проходит к резаку, где подхватывается струей режущего кислорода и доставляется на место резки. Как правило, применяется при использовании легковоспламеняемой смеси на основе алюминиево-магниевого порошка, подача которой непосредственно кислородом недопустима.
  2. Однопроводная – флюс подается из бачка под воздействием давления кислорода, что исключает необходимость наличия дополнительного инжектора в головке резака.
  3. Внешняя – кислород подводится к нижней и верхней части емкости с флюсом. Вверху емкости создается давление, внизу – кислород подается в шланг.

Резка высоколегированных марок сталей

Стали с большим содержанием хрома (от 5 % и более) перед резкой рекомендуется предварительно подвергать отпуску при температуре 300 °C, особенно при необходимости получения деталей сложной конфигурации. Это позволит предотвратить трещинообразование. А хромоникелевые стали, полученные методом холодной прокатки – смягчающей термообработке.

Для резки кислородно-флюсовым копьем запрещено применять флюсы повышенной влажности и те, которые на протяжении длительного периода времени находились во флюсопитателе.

Качественная поверхность реза получается, когда кислородное копье при разделительной резке удерживается перпендикулярно разрезаемому материалу либо углом вперед. Но данный метод возможен только при условии прямолинейного раскроя.

  • смесь двууглеродистого натрия (98-99 %) с фосфористым кальцием (1-2 %);
  • железный порошок;
  • доломитизированный известняк;
  • кварцевый песок.

Для кислородно-флюсовой резки чугуна используются все вышеперечисленные порошки кроме состава на основе двууглеродистого натрия и фосфористого кальция.

Раскрой цветных металлов

Благодаря сжиганию флюса при резке кислородно-флюсовым копьем вводится огромное количество дополнительного тепла, чем возмещается низкий тепловой эффект горения меди и ее сплавов и повышенный отвод тепла в обрабатываемый материал, что обусловлено высокой теплопроводностью. Но и эти металлы требуют предварительного подогрева места реза до температуры от 200 до 400 °C.

Расположение мундштука по отношению к поверхности разрезаемого материала выбирается в зависимости от его толщины и составляет 30-50 мм, что больше даже сравнительно с резкой высоколегированных сталей.

Также по сравнению с раскроем сталей с высоким содержанием хрома и других легирующих элементов процесс протекает в 2-4 раза медленнее и сопровождается повышенным расходом флюса:

  • при резке меди – в 8-12 раз;
  • при резке латуни – в 4-8 раз.

Поверхность реза не отличается высоким качеством, поэтому изделия впоследствии подвергаются механической обработке.

Алюминий режется этим способом довольно грубо.

  • смесь железного (35-90 %) порошка с алюминиевым (10-65 %);
  • состав на основе железного (50-55 %), алюминиевого (20-40 %) порошка и азотнокислого натрия (5-30 %).

Порезка бетона и железобетона

Помимо различных металлов резка кислородно-флюсовым копьем может применяться для бетона и различных ЖБИ толщиной до 1500 мм. От раскроя сталей процесс отличается тем, что необходимо использовать флюсы со значительно большей теплоэффективностью, поскольку бетон в кислороде не горит. Отлично подходит для этих целей смесь на основе 75-90 % железного и 10-25 % алюминиевого порошка. Для подачи флюса применяется внешняя схема.

В начале резки копье прижимается к поверхности материала, а в процессе работы его следует периодически вращать и перемещать возвратно-поступательными движениями. Также его допускается установить на специальной стойке, чтобы облегчить нагрузку, или держать в руках, если объем работы небольшой.

Области применения кислородно-флюсовой резки

Кислородно-флюсовая резка нашла широкое применение на металлургических предприятиях, заводах тяжелого машиностроения. Ее использование экономически оправдано при выполнении следующих работ:

  • обрезка прибылей на стальных отливках;
  • вырезания отверстий (леток) в сталеплавильных печах металлургического производства, которые служат для выпуска шлака, штейна или расплавленного металла;
  • резка металлолома, неликвидов на копровых участках различных предприятий;
  • поверхностная резка и разделка различных дефектов (шлаковые и песчаные включения, наплывы и т.п.) на поверхности отливок из высоколегированных сталей;
  • ликвидация остатков шлака и стали (так называемых «козлов») в шлаковых камерах доменных, электрических и мартеновских печей;
  • резка блюмов в холодном состоянии;
  • прожигание отверстий в бетоне и железобетоне и их разделение.

Поскольку качество реза при кислородно-флюсовой резке относительно невысокое, данный метод применяется в основном в случаях, когда использование других способов раскроя экономически нецелесообразно либо просто невозможно.

Специальные способы резки (стр. 3 из 3)

Применяют также последовательно-струйный способ кислородно-дуговой резки стали толщиной до 50 мм. При этом способе к обычному электрододержателю для дуговой сварки присоединяют резательную приставку, с помощью которой подается струя кислорода на металл, расплавленный дугой. При резке мундштук перемещают вслед за Электродом. Резка этим способом может производиться на постоянном или переменном токе. Для этого способа резки пригодны электроды любых марок, Можно использовать также углеродистую проволоку любой марки диаметром 5 мм, покрытую обмазкой из 20% мела и 80% каменноугольного шлака. При диаметре проволоки 5 мм ток берут 200 — 250 А. Качество реза и производительность при этом способе резки примерно такие же, как при ручной ацетилено-кислородной резке.

Подводная резка

Для подводной резки применяют специальные резаки, работающие на газообразном горючем (водороде) или на жидком горючем (бензине).

В головке водородно-кислородного резака по центральному каналу мундштука поступает режущий кислород, а по кольцевому каналу между мундштуками идет водородно-кислородная смесь, образующая подогревательное пламя. Снаружи мундштука имеется колпак, через который проходит сжатый воздух, образующий пузырь вокруг пламени, предохраняющий его от соприкосновения с водой. Пламя резака зажигается над водой, затем в мундштук подается сжатый воздух и резак опускают под воду.

Головка бензино-кислородного резака имеет распылитель, через отверстие которого в камеру подается кислород, а через другие отверстия — бензин. Испаряясь в камере, бензин с кислородом образует горючую смесь, которая выходит через отверстие в донышке и сгорает. Режущая струя кислорода подается через центральный канал. Газообразные продукты сгорания своим давлением оттесняют воду от пламени и не дают ему погаснуть.

Водородно-кислородным резаком можно разрезать сталь толщиной до 70 мм под водой на глубине до 30 м. При этом наибольшее давление газов перед резаком составляет в кгс/см 2 : кислорода 6,6, водорода 5,5 и воздуха. 5.

Читать еще:  Резка металла, обработка металла

Копьевая резка

Способ копьевой резки применяют для резания низкоуглеродистой и нержавеющей стали и чугуна большой толщины, а также при резка железобетона. Толщина стальных болванок, разрезаемых кислородным копьём, может достигать нескольких метров. Применяют два основных способа копьевой резки: кислородным и кислородно-порошковым копьём (кислородно-флюсовая резка).

Прожигание отверстий в разрезаемой болванке из стали или чугуна или в железобетоне производится концом стальной трубки (копья), в которую непрерывно подаётся кислород под давлением. Необходимая для процесса теплота создаётся при сгорании конца трубки и железа обрабатываемой болванки.

В начале процесса конец трубки нагревается до температуры воспламенения горелкой или электрической угольной дугой. Давление кислорода в начале процесса равно 2— 3 кгс/см 2 , а когда рабочий конец копья углубится в металл до 30—50 мм, давление кислорода увеличивают до 8—15 кгс/см 2 , в зависимости от толщины прожигаемого металла. Во избежание приваривания нагретого конца копья к стенке отверстия копьем периодически производят возвратно-поступательные движения в пределах 100—150 мм, поворачивая на

В качестве копья используют стальную газовую трубку диаметром

При порошково-кислородной копьевой резке в трубку-копье после нагрева его конца и подачи кислорода начинают подавать порошкообразный флюс, который по выходе из трубки сгорает, образуя пламя длиной 100—150 мм с температурой около 3500—4000° С. При резке и прожигании отверстий конец копья в этом случае держат на расстоянии 30—100 мм от стенки (дна) прожигаемого отверстия. В качестве флюса используют смесь из 80% железного и 20% алюминиевого порошка.

Перемещая копье в горизонтальном или вертикальном направлении, этими способами можно не только прожигать отверстия, но и производить разрезку болванок, отрезку прибылей литья, вырезку отверстий в железобетонных, кирпичных и каменных строительных конструкциях.

Процесс резки может быть механизирован. Технология и режимы процесса, конструкции копьедержателей, а также установки для ручной и механизированной кислородной и кислородно-порошковой копьевой резки разработаны в сварочной лаборатории МВТУ им. Баумана.

Материал для данной работы был взят из учебника «Газовая сварка и резка металлов» под ред. Глизманенко Д. Л., изд. «Высшая школа», Москва, 1969 г.

[1] Кислородная резка входит в группу процессов так называемой термической резки металла, объединяемых общим названием «газовая резка металлов». В эту группу, кроме кислородной резки, входят: кислородно-флюсовая, кислородно-дуговая, воздушно-дуговая, плазменно-дуговая и плазменная резка металлов.

[2] При резке под водой – пары бензина.

[3] Этот способ называют также резкой проникающей дугой, что отражает характер дугового разряда, используемого для резки.

Резка металла газом

  • СОДЕРЖАНИЕ:
  • • Основные методы резки металла газом
  • • Как рассчитать стоимость услуги за метр
  • • Расход газа при резке металла
  • • Особенности резки в размер
  • • Преимущества метода газовой резки
  • • Возможность деформации
  • • Процесс раскроя металла
  • • Устройство ручного газового резака
  • • Устройство инжекторного резака
  • • От чего зависит расход газа

Газовая резка металла (кислородная/автогенная) – процесс разрезания стальных и металлических изделии/заготовок кислородным потоком, который подается из специального аппарата. Суть процедуры раскроя заключается в горении металла, с помощью газовой смеси и кислорода, подаваемых на обрабатываемый элемент. Предварительно изделие нагревается до 1300 градусов открытым пламенем, затем подается кислородная струя, разрезающая металл в соответствии со схемой. Современная технология газовой резки позволяет производить раскрой листа любой конфигурации толщиной до 300 мм, в отдельных случаях до 1000 мм.

Основные методы резки металла газом

Копьевая резка — с помощью данной операции производится обработка нержавейки, чугуна и низкоуглеродистой стали больших диаметров. Суть резки заключается в том, что копье разогревается до температуры плавления и прижимается к разрезаемой заготовке. Метод распространен в области машиностроения и металлургии.

Кислородно-флюсовая резка используется для работы с высоколегированными хромистыми и хромоникелевыми сплавами. Данный способ характеризуется тем, что в струю газа (кислорода) начинает вводится порошкообразный флюс, он служит дополнительным источником тепла.

Воздушно-дуговая резка основана на расплавлении металла посредством электрической дуги. При использовании данного метода газ подается вдоль всего электрода.

Резка пропаном выполняется при необходимости раскроя титана, низколегированных и низкоуглеродистых стальных сплавов. Оборудование данного типа не может раскроить металл толще 300 мм.

Толщина материала, смПробивание, сек.Ширина реза, смРасход пропана, м 3Расход кислорода, м 3
0,4От 5 до 80,250,0350,289
1,0От 8 до 130,30,0410,415
2,0От 13 до 180,40,0510,623
4,0От 22 до 280,450,0711,037
6,0От 25 до 300,50,0711,461

Как рассчитать стоимость услуги за метр

При расчете стоимости в рассмотрение принимается: толщина металла, максимальный размер детали, ширина реза, кромка, особенности конфигурации, исходный материал – черный или цветной металл, а также предусмотрена резка под углом. Как правило, формула для расчета принимает во внимание прямой рез, если же она осуществляется по окружности/сектору, тогда используется повышающий коэффициент 2.0. Стоимость одного отверстия = 0,25 стоимости реза 1 п.м. металла.

Расход газа при резке металла

Рабочий диапазон, ммРезательное сопло NXКислород (давление, bar)Горючий газ (давление, bar)Кислород (потребление, m3/h)Горючий газ (потребление, m3/h)
3-5000 NX1,0-2,00,51,5-2,00,20
5-1000 NX1,5-2,00,52,0-3,00,30
10-150 NX2,0-3,00,53,0-3,50,35
15-251 NX2,5-3,50,53,5-4,50,40
25-502 NX3,5-4,00,54,0-4,80,40
50-753 NX3,0-4,50,55,0-6,50,40
75-1504 NX3,5-5,50,56,5-9,50,50
150-2005 NX4,5-5,50,510,0-14,00,60
200-3006 NX5,5-6,50,515,0-19,00,70

Особенности резки в размер

Газовая резка позволяет проводить фигурный раскрой листа. Используя газовый резак, можно получить ровный вертикальный край без рваных швов. Также повысить качество можно применяя трафаретную резку. Среди достоинств метода – мобильность оборудования, благодаря чему можно совершать одинаковые операции по шаблонным задачам.

Преимущества метода газовой резки

  • ● быстрота и универсальность
  • ● оптимальная стоимость и высокое качество
  • ● любой уровень сложности
  • ● любая конфигурация реза
  • ● возможность работы с металлом разной толщины

Возможность деформации

Деформация — обычное явление, если на металл оказывается термическое воздействие. Исправить дефекты можно с помощью вальцовки, обжига, предварительного закрепления изделия, также не стоит превышать допустимую скорость обработки.

Процесс раскроя металла

● Резка начинается с точки, от которой должен идти разрез.
● Эта точка разогревается до температуры 1000-1300 С. После воспламенения материала пускается узконаправленная струя кислорода.
● Резак плвно ведется по линии (угол — 84-85 градусов), сторона — противоположная от резки.
● Когда линия раскроя достигнет 20 мм, угол наклона меняется на 20-30 градусов.

Большая Энциклопедия Нефти и Газа

Кислородно-копьевая резка

Кислородно-копьевая резка применяется для прожигания отверстий в бетоне или железобетоне. При этом способе кислород продувается через стальную трубу ( копье), конец которой разогрет до температуры оплавления и прижат к поверхности разрезаемого материала. В результате интенсивного окисления конца трубы в струе кислорода образуются жидко-текучие оксиды железа, которые реагируют с бетоном или железобетоном и превращаются в жидкотекучие шлаки, легко выдуваемые из полости реза. Постепенным прижатием копья к материалу оно преодолевает сопротивления застывающих шлаков и проникает вглубь полости реза, образуя сквозное отверстие. [1]

Кислородно-копьевую резку применяют для прожигания отверстий не только в бетоне и железобетоне, но и в стали. Она используется также для резки скрапа, удаления прибылей стального литья и прожигания отверстий при разделительной резке плит большой толщины на заводах тяжелого машиностроения и металлургической промышленности. [3]

Кислородно-копьевую резку применяют для прожигания от-герстий не только в бетоне и железобетоне, но и в стали. Она используется также для резки скрапа, удаления прибылей стального литья и прожигания отверстий при разделительной резке плит большой толщины на заводах тяжелого машиностроения и металлургической промышленности. [5]

На некоторых металлургических заводах применяют кислородно-копьевую резку металла больших толщин . На рис. 34 представлена схема кислородно-копьевой резки. Резку выполняют одновременно два резчика, из которых первый универсальным резаком прорезает металл на ту глубину, которую позволяет пробить резак. При резке оператор совершает возвратно-поступательное перемещение резака для того, чтобы второй оператор смог ввести копье в разрез. Второй оператор вводит в разрез металлическое копье ( представляющее собой стальную или красно-медную трубку с наружным диаметром 6 — 10 мм и внутренним 3 — 6 мм) в зону расплавленного шлака и металла и перемещает его вдоль реза до нижней кромки металла. [7]

На некоторых металлургических заводах применяют кислородно-копьевую резку металла больших толщин. На рис. 34 представлена схема кислородно-копьевой резки . Резку выполняют одновременно два резчика, из которых первый универсальным резаком прорезает металл на ту глубину, которую позволяет пробить резак. При резке оператор совершает возвратно-поступательное перемещение резака для того, чтобы второй оператор смог ввести копье в разрез. Второй оператор вводит в разрез металлическое копье ( представляющее собой стальную или красно-медную трубку с наружным диаметром 6 — 10 мм и внутренним 3 — 6 мм) в зону расплавленного шлака и металла и перемещает его вдоль реза до нижней кромки металла. [8]

Баумана применяется для порошково-кислородной резки железобетона. Установка состоит из флюсоносителя, смонтированного на тележке, копье-держателя, ручного или машинного резаков, кислородной рампы на 5 — 10 баллонов, воздушной рампы на 3 баллона. Копьедержа-тель служит для крепления стальной трубы, по которой подается кислород при кислородно-копьевой резке . Резаки ( ручной и машинный) работают на пропан-бутане в смеси с кислородом и имеют устройство для внешней подачи флюса в струю режущего кислорода. [9]

Баумана применяется для порошково-кислородной резки железобетона. Установка состоит из флюсоносителя, смонтированного на тележке, копье-держателя, ручного или — машинного резаков, кислородной рампы на 5 — 10 баллонов, воздушной рампы на 3 баллона. Копьедержа-тель служит для крепления стальйой трубы, по которой подается кислород при кислородно-копьевой резке . Резаки ( ручной и машинный) работают на пропан-бутане в смеси с кислородом и имеют устройство для внешней подачи флюса в струю режущего кислорода. [10]

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector