Bktp-omsk.ru

Делаем сами
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Капиллярная дефектоскопия сварных швов

Капиллярный и магнитопорошковый контроль

Капиллярный/магнитопорошковый контроль металлических изделий.

800 руб./ квадратный метр

Капиллярный контроль – средство для обнаружения поверхностного или сквозного разрушения материала. Он помогает определить:

  • расположение дефектов,
  • их протяженность,
  • ориентацию по отношению к поверхности.

При применении капиллярной методики цветные красители, являющиеся индикаторными жидкостями, проникают внутрь трещин или полостей, имеющих выход к поверхности. Краситель хорошо смачивает контактную поверхность, что позволяет ему легко находить выход к ней и окрашивать поверхность в тех местах, где поры или трещины вплотную подходят к поверхности.

Цветная дефектоскопия требует предварительной обработки поверхности. Ее полная очистка и просушка помогает повысить качество исследования. В некоторых случаях объект полностью погружается в ванну с красителем для полной пропитки. Излишки красителя очищаются с поверхности детали после ее выемки из ванны.

После просушки на поверхности детали хорошо видны дефекты и трещины.

Капиллярный метод контроля (КМК) основан на капиллярном проникновении индикаторных жидкостей в полость несплошностей материала объекта контроля и регистрации образующихся инди­каторных следов визуально или с помощью преобразователя. Ме­тод позволяет обнаруживать поверхностные (т. е. выходящие на поверхность) и сквозные (т. е. соединяющие противоположные по­верхности стенки ОК) дефекты, которые могут быть обнаружены также при визуальном контроле.

Простота и доступность капиллярных методов контроля способствует самому широкому распространению этих технологий. Эта методика проверки наличия трещин используется не только профессионалами, но и домашними мастерами-умельцами. Применение в качестве пенетранта обычного керосина и мела вместо проявителя позволяет обнаружить самые тонкие трещины.

Обнаруженные капиллярным методом трещины узла крепления фланца. Учебный пример – трещины явно утрированы, но видно, как они хорошо видыны на фоне проявителя.

В исполнении компетентного специалиста капиллярный контроль сварных соединений эффективен – ведь профессионал знает, какого характера трещины менее всего желательны в обследуемом узле или детали, и именно эти трещины следует разыскивать в первую очередь. Неспроста несколько увеличительных стекол входят в комплект визуально – инструментального контроля. Эти простые оптические приборы позволяют обнаруживать трещины, к тому же подчеркнутые цветом пенетранта.

Доступность этого метода обуславливает его непосредственную связь с визуальным обследованием. Дополняя и развивая результаты зрительного контроля, цветная капиллярная дефектоскопия может стать основанием для использования других, более сложных методов проверки качества, например – ультразвукового или рентгенографического обследования.

Проникающие текучие жидкости – пенетранты — изготавливают разных цветов, есть даже люминесцентные образцы, способные светиться в темноте. Но основные качества пенетрантов связаны с их способностью проникать в капилляры и трещины определенного минимального размера. Пять нормируемых классов чувствительности пенетранта рассчитаны на выявление трещин и пор размером от величины менее 1 мкМ до 500 мкМ и более. Нужно понимать, что чем крупнее дефект, тем сложнее к нему применить капиллярный способ контроля – пенетрант из крупной трещины просто вымывается. Впрочем, трещины такой ширины уже становятся заметными невооруженным глазом.

Прочие достоинства капиллярного метода контроля также важны для всех заинтересованных сторон:

— возможность, в большинстве случаев, контроля без остановки работы машины или узла, ему подвергаемого;
— высокая наглядность метода, важная для заказчиков таких работ и неспециалистов;
— дешевизна и универсальность метода.

Единственным понятным ограничением капиллярной технологии может быть пористая или волокнистая структура объекта, впитывающая жидкость – пенетрон.

Процесс капиллярного контроля состоит из следующих основных операций:

а) очистка поверхности 1 ОК и полости дефекта 2 от загрязне­ний, жира и т. д. путем их механического удаления и растворе­ния. Этим обеспечивается хорошая смачиваемость всей поверх­ности ОК индикаторной жидкостью и возможность проникнове­ния ее в полость дефекта;

б) пропитка дефектов индикаторной жидкостью 3. Для этого она должна хорошо смачивать материал изделия и проникать в де­фекты в результате действия капиллярных сил. По этому приз­наку метод называют капиллярным, а индикаторную жидкость — индикаторным пенетрантом или просто пенетрантом (от лат. penetrо — проникаю, достаю);

в) удаление с поверхности изделия излишков пенетранта, при этом пенетрант в полости дефектов сохраняется. Для удаления используют эффекты диспергирования и эмульгирования, приме­няют cпециальные жидкости — очистители;

г) обнаружение пенетранта в полости дефектов. Как отмечено выше, это делают чаще визуально, реже — с помощью специальных устройств — преобразователей. В первом случае на поверхности наносят специальные вещества — проявители 4, извлекающие пене­трант из полости дефектов за счет явлений сорбции или диффузии. Сорбционный проявитель имеет вид порошка или суспензии.

Пенетрант пропитывает весь слой проявителя (обычно доволь­но тонкий) и образует следы (индикации) 5 на его наружной по­верхности. Эти индикации обнаруживают визуально.

Научно-производственная лаборатория «ПРОконтроль» располагает аттестованной лабораторией капиллярного неразрушающего контроля ; входит в состав единой системы соответствия в области промышленной, экологической безопасности, безопасности в энергетике и строительстве.

Связаться с нами и задать интересующие вопросы можно по телефону +7 (495) 768-61-65. Мы всегда готовы выполнить Ваш заказ оперативно и на высоком уровне!

Капиллярная дефектоскопия

Содержание

  • Метод капиллярной дефектоскопии
  • Суть метода
  • Что необходимо иметь для проведения таких работ?
  • Как протекает процесс?
  • Плюсы и минусы капиллярного контроля
  • Где используется метод капиллярной дефектоскопии?

Метод капиллярной дефектоскопии

Для выявления наружных дефектов сварных швов (непроваров, пор, раковин, следов коррозии и пр.) и исследования прилегающих к ним зон, применяется метод капиллярной дефектоскопии. Но если изделие изготовлено из ферромагнитных материалов, то помимо этого способа может быть использован другой, обладающий высокой чувствительностью даже к самым мелким трещинам, а называется он магнитопорошковая дефектоскопия сварных швов.

Что касается капиллярного контроля, то этот метод исследования применим не только в чёрной металлургии, но и в других отраслях промышленности, ведь его можно использовать для проверки качества швов пластмасс, керамики, сплавов цветных металлов и других материалов. Для этих целей потребуется комплект специального оборудования и особые химические вещества. Всё это и многое другое можно приобрести на официальном сайте компании «ПромГруппПрибор», являющейся производителем и продавцом приборов неразрушающего контроля.

Суть метода

Капиллярная дефектоскопия для выявления дефектов подразумевает использование индикаторных жидкостей (пенетрантов), которые на капиллярном уровне проникают в имеющиеся полости, причём, это возможно даже тогда, когда при внешнем осмотре их обнаружить не удалось. Трещины, заполненные пенетрантом, можно выявить визуально, либо при участии преобразователя. Порядок проведения капиллярного контроля регламентируется ГОСТ 18442-80.

Что необходимо иметь для проведения таких работ?

Все заинтересованные лица набор капиллярной дефектоскопии купить могут, минуя розничные торговые сети, ведь покупка товаров в режиме онлайн теперь считается самым лучшим способом приобретения, а цена приборов и средств контроля приятно порадует всех, кто решил прибегнуть к услугам интернет-магазина компании «ПромГруппПрибор».

Как протекает процесс?

Капиллярный контроль проходит постадийно:

  1. Подготовительный этап. Поверхность сварного шва, подлежащая контролю, тщательно очищается от разного рода загрязнений, которые могут быть удалены механическим или химическим способом. В большинстве случаев, применима комплексная очистка, по окончании которой следует позаботиться о том, чтобы на объекте не осталось химических реагентов, ведь они могут повлиять на точность результатов. Хорошо подготовленная поверхность требует просушки.
  2. Нанесение индикаторной жидкости. Обычно, пенетрант имеет красный цвет, что делает его максимально заметным. Температура обрабатываемой поверхности не должна быть менее 5 и более 50 градусов по Цельсию. Индикаторная жидкость может быть нанесена несколькими способами. Если есть возможность, то исследуемый объект погружается в специальную ванну, но, как правило, такой возможности нет, поэтому пенетрант наносится при помощи пульверизатора. В самом крайнем случае – кистью. Главное, обеспечить объекту хорошую пропитку и покрытие индикационной жидкостью. Кстати, пенетранты последнего поколения реализуются в аэрозольных баллонах, что существенно упрощает и ускоряет процесс их нанесения.
  3. Промежуточная очистка. Данная процедура проводится с целью удаления излишков пенетранта. Для этих целей сначала используется обыкновенная салфетка или тряпка, смоченная растворителем, применяемым для предварительной очистки. В процессе нельзя механически воздействовать на поверхность, подлежащую контролю, поэтому подобные работы проводятся очень аккуратно. То есть, дефектная полость должна быть заполнена пенетрантом и удалять его оттуда нельзя до окончания проведения исследований. После проведения промежуточной очистки поверхность должна быть абсолютно сухой.
  4. Нанесение проявителя. Такая операция проводится сразу после полного высыхания поверхности. Проявитель наносится тонким слоем и спустя некоторое время он за счёт капиллярных сил начинает адсорбировать на своей поверхности пенетрант, образуя тем самым яркое индикаторное изображение.
  5. Выявление дефектов. Как только закончится процесс проявки, можно приступать к осмотру контролируемой поверхности. Весь контроль сводится к выявлению и регистрации индикаторных следов. Интенсивно окрашенные зоны сигнализируют о глубине и ширине дефекта, а бледная окраска говорит о наличии незначительных изъянов на поверхности сварного шва трубопровода или другого объекта. Для облегчения проведения исследований рекомендуется использовать увеличительные стёкла. После окончания всех необходимых мероприятий, проявитель подлежит удалению с поверхности, а делается это при помощи растворителя.
  6. Повторный контроль. Проводится в том случае, если созданные условия не поспособствовали выявлению дефектов или была нарушена технология. Вторичная капиллярная дефектоскопия сварных швов осуществляется с использованием тех же реагентов, которые были задействованы при первом исследовании. Следует позаботиться о том, чтобы следы первичного контроля были тщательно ликвидированы. Что касается алгоритма действий, то он аналогичен.

Плюсы и минусы капиллярного контроля

К положительным сторонам данного метода исследования можно отнести:

  1. Простоту операций.
  2. Доступность оборудования и материалов.
  3. Широкий спектр применения.
  4. Возможность обнаружения сквозных и поверхностных дефектов, а также получение информации, касающейся их расположения, размеров, глубины и форм.
  1. Большое количество времени, затрачиваемое на проведение всех манипуляций (около двух часов).
  2. Невозможность полной автоматизации процесса, следовательно, высокая его трудоёмкость.
  3. Если исследования проводятся при отрицательных температурах, то результаты его не отличаются большой точностью.
  4. Когда планируется проведение исследованием методом «капиллярная дефектоскопия», материалы купить – не такая уж и большая проблема. Проблема в том, что они имеют ограниченный срок хранения, и при истечении срока годности не могут быть применены.

Где используется метод капиллярной дефектоскопии?

Данный способ контроля применим для выявления дефектов на поверхности изделий, изготовленных практически из любых материалов, причём, металлургия, строительство и ЖКХ – это не единственные сферы, где уместно прибегать к таким методам исследований. Машиностроение, судостроение, авиационная промышленность, производство продукции – капиллярная дефектоскопия востребована и в этих отраслях, и зачастую, она бывает единственно возможным методом выявления дефектов.

Стоит отметить, что этот способ исследования может быть использован и для изделий, изготовленных из ферромагнитных составов, но не всегда, ведь особенности эксплуатации таких объектов не позволяют контроллёру провести комплекс необходимых мероприятий. А всё потому, что дефективная полость не должна быть чем-то заполнена или иметь загрязнения, что не всегда возможно технически.

Цветная дефектоскопия сварных швов: принцип действия, ГОСТы. Применяемые материалы и порядок проведения

Цветная дефектоскопия сварных швов относится к методу капиллярной дефектоскопии неразрушающего контроля. В ее основе лежит явление проникания смачивающей жидкости в поверхностные дефекты сварных соединений.

Цель – обнаружение поверхностных дефектов под воздействием средств, изменяющих светоотдачу дефектных зон, что приводит к изменению контрастности неповрежденных и поврежденных участков.

Цветной способ, который еще называют методом красок, применяется для обнаружения невидимых и слабо видимых невооруженным взглядом поверхностных изъянов в сварных швах:

Цветная дефектоскопия дополняет рентгеновский и ультразвуковой методы контроля по выявлению поверхностных мелких дефектов, размеры которых находятся за пределами чувствительности данных способов дефектоскопии.

Принцип действия

В основе цветной дефектоскопии лежат физические явления:

  • капиллярное проникновение, сорбция, диффузия;
  • световой и цветовой контрасты.

Индикаторные жидкости просачиваются в полости поверхностных и сквозных дефектов, что приводит к образованию цветного индикаторного рисунка (следа дефекта). Индикаторная жидкость имеет яркую окраску. След дефекта чаще всего ярко-красный на белом фоне проявителя. Индикаторный след регистрируется.

Метод красок проводится при естественном, с применением ламп накаливания или комбинированном освещении.

ГОСТы

Способ цветной дефектоскопии сварных швов регламентирован ГОСТами.

  • общие понятия;
  • методы капиллярного неразрушающего контроля;
  • средства капиллярного неразрушающего контроля;
  • аппаратура капиллярного неразрушающего контроля;
  • алфавитный указатель терминов.

ГОСТ содержит 2 справочных приложения.

Содержание межгосударственного стандарта:

  • основные положения и область применения;
  • дефектоскопические материалы;
  • аппаратура;
  • проведение исследования;
  • оформление результатов;
  • требования безопасности.

ГОСТ имеет 6 справочных приложений.

Другие нормативные документы

Исследование сварных соединений способом красок также регулируется отраслевыми стандартами:

Применяемые материалы

Основным капиллярным дефектоскопическим материалом метода красок является индикаторный пенетрант (в переводе с английского – проникать). Пенетранты содержат красящие вещества определенного цветового тона, наблюдаемого в видимом свете. Это раствор или суспензия жирорастворимого темно-красного красителя.

  1. Проявитель – служит для извлечения пенетранта из несплошности с целью образования индикаторного рисунка и формирования контрастирующего фона. В качестве проявителей используют суспензии порошкообразных сорбентов и белые проявляющие лаки.
  2. Очиститель – состав для удаления индикаторного пенетранта с поверхности исследуемого образца. Используют моющие порошки, ПАВ (поверхностно-активные вещества), этиловый спирт.
  3. Гаситель пенетранта – состав, служащий для устранения фоновой окраски.

Порядок проведения

С помощью способа красок производится выявление трещин и иных изъянов, выходящих на поверхность сварочного шва. Этот метод исследования не требует применения аппаратуры.

Технологическая последовательность цветной дефектоскопии сварного шва включает этапы:

  1. Очищение поверхности образца от загрязнений.
  2. Нанесение в 3-4 приема слоя подкрашенного индикаторного пенетранта. Время выдержки проникновения красящего вещества в дефекты составляет 15-20 минут.
  3. Удаление избытка пенетранта способом промывки поверхности сварного шва 50% водным раствором кальцинированной соды. Просушивание или вытирание поверхности светлой салфеткой. При наличии на салфетке следов обработка повторяется.
  4. Нанесение проявителя – водного раствора каолина. Просушивание поверхности подогретым воздухом до появления красного индикаторного рисунка на белом фоне каолина.
  5. Осмотр поверхности шва на предмет выявления дефектов. Рекомендуется проводить дважды: с интервалом 3-5 минут и 20-30 минут.
  6. Обработка и оформление результатов исследования.

Капиллярная дефектоскопия сварных соединений

1. Физические основы капиллярной дефектоскопии

Капиллярные методы контроля предназначены для обнаружения нарушений сплошности в поверхностных слоях сварных соединений. В большинстве случаев согласно техническим требованиям выявлению подлежат настолько малые дефекты сварных соединений, которые заметить при визуальном осмотре почти невозможно. Применение оптических приборов, например лупы или микроскопа, не позволяет обнаруживать поверхностные дефекты вследствие недостаточной контрастности их изображений на фоне металла и малого поля зрения, обеспечиваемого при большом увеличении.

Методы капиллярной дефектоскопии позволяют выявлять разного рода трещины, свищи, микропоры и другие дефекты, выходящие на поверхность, за счет повышения контрастности индикаторного рисунка, образующегося на дефектах на фоне поверхности контролируемого объекта.

Изменить соотношение оптической плотности изображения дефекта и фона можно двумя способами. Первый способ повышения контрастности изображения заключается в полировании поверхности контролируемого сварного соединения с последующим травлением ее в растворах кислот. При такой обработке дефект забивается продуктами коррозии, чернеет и становится заметным на светлом фоне полированного материала. Этот способ имеет целый ряд ограничений. В частности, в производственных условиях нерентабельно полировать поверхность сварного соединения и особенно шва. К тому же данный способ неприменим при контроле прецизионных полированных деталей и неметаллических материалов. Травление приемлемо только при контроле локальных участков поверхности металла, если имеется подозрение на наличие дефектов.

Второй способ повышения контрастности изображения основан на изменении светоотдачи дефектов заполнением их со стороны поверхности специальными светои цветоконтрастными индикаторными проникающими жидкостями — пенетрантами. Если в состав пенетранта входят люминофоры — вещества, испускающие свет под действием ультрафиолетового излучения, то такие жидкости называются люминесцентными, а метод контроля — люминесцентной дефектоскопией (ЛД). Если же основой пенетранта являются красители, видимые при дневном свете, то метод контроля называется цветной дефектоскопией (ЦД). Красители при ЦД используют ярко-красного цвета.

Контроль, осуществляемый методами капиллярной дефектоскопии, заключается в следующем. Поверхность контролируемой детали очищают от пыли, лакокрасочных покрытий, органических и других загрязнений, обезжиривают и сушат. На подготовленную поверхность наносят слой пенетранта и выдерживают некоторое время, чтобы жидкость проникла в открытую полость дефекта (рис. 40, а). Затем жидкость удаляют с поверхности (рис. 40, б), но при этом часть ее остается в полости дефекта.

Для повышения выявляемости дефектов на поверхность детали наносится специальный проявитель (рис. 40, в) в виде быстросохнущей суспензии (например, из каолина или коллодия) либо лаковое покрытие. Проявляющий материал (обычно белого цвета) вытягивает пенетрант из полости дефекта, что приводит к образованию на проявителе индикаторного следа, полностью повторяющего конфигурацию дефекта в плане, но имеющего бо́льшие размеры. Такие следы легко различимы даже без использования оптических средств. Степень увеличения размеров индикаторного следа зависит от глубины расположения дефекта, т. е. от объема пенетранта, заполнившего дефект, и промежутка времени, прошедшего с момента нанесения проявляющегося слоя.

Читать еще:  Электронный научный журнал Современные проблемы науки и образования ISSN 2070-7428 Перечень ВАК ИФ РИНЦ 0,931

Физической основой методов капиллярной дефектоскопии служит явление капиллярной активности — способность жидкости втягиваться в мельчайшие сквозные отверстия и открытые с одной стороны каналы.

При попадании жидкости в капиллярный канал ее поверхность искривляется, образуя так называемый мениск. Силы поверхностного натяжения стремятся уменьшить свободную границу мениска, и в капилляре начинает действовать дополнительная сила, приводящая к всасыванию смачивающей жидкости. Глубина, на которую жидкость проникает в капилляр, прямо пропорциональна коэффициенту ее поверхностного натяжения и обратно пропорциональна радиусу капилляра. Иными словами, чем меньше радиус капилляра (дефекта) и лучше смачиваемость материала, тем быстрее и на большую глубину жидкость проникает в капилляр.

Рис. 40. Стадии контроля поверхности детали капиллярным методом с применением проявителя: а — полость трещины заполняется проникающей жидкостью — пенетрантом; б — жидкость удаляется с поверхности детали; в — наносится проявитель, трещина выявляется; 1 — деталь; 2 — полость трещины; 3 — проникающая жидкость; 4 — проявитель; 5 — индикаторный след трещины

2. Методика капиллярной дефектоскопии

Процесс контроля качества сварного соединения капиллярными методами складывается из следующих технологических операций: подготовка объекта к контролю, обработка его дефектоскопическими материалами, выявление дефектов и заключительная очистка объекта по окончании процесса.

Подготовка объекта к контролю. Подготовка заключается в удалении всевозможных загрязнений и лакокрасочных покрытий, обезжиривании и сушке контролируемой поверхности.

Для очистки поверхности применяется комбинация различных способов механической обработки (шлифования, полирования, шабрения и др.) с последующей промывкой и протиркой ее легколетучими жидкими растворителями (скипидаром, ацетоном, бензином, спиртом и др.). Выбранный способ очистки должен обеспечивать удаление загрязнений из полости дефекта без внесения в нее новых загрязнений.

Сварные швы и околошовные зоны обрабатывают абразивным кругом, а затем наждачной бумагой разной зернистости. Такая механическая обработка позволяет удалить все неровности и сгладить выпуклость шва. Однако в процессе очистки абразивная и металлическая пыль заполняет полости дефектов, а тонкий слой пластически деформированного металла закрывает их. Следовательно, после механической обработки для вскрытия полостей дефектов поверхность шва необходимо протравить раствором кислоты или щелочи (для алюминиевых сплавов).

Следует отметить, что от качества очистки поверхности сварного соединения существенно зависит чувствительность контроля.

В настоящее время помимо традиционных способов очистки используется весьма перспективная ультразвуковая очистка, при которой сварное соединение погружается в ванну с жидким растворителем и обрабатывается мощным потоком ультразвуковым излучением, а также анодно-ультразвуковая очистка, при которой детали, помещенные в ванну с травильным составом, одновременно обрабатываются ультразвуком и электрическим током.

Способы очистки и необходимая чистота контролируемых поверхностей определяются техническими требованиями к качеству сварного соединения.

Обработка контролируемого объекта дефектоскопическими материалами. Обработка сварных соединений дефектоскопическими материалами заключается в заполнении полостей дефектов индикаторной жидкостью, удалении ее избытка и нанесении проявителя.

В состав пенетрантов на водной основе входят люминофоры или красители, а также ингибиторы — вещества, тормозящие окислительные процессы. Такие пенетранты наиболее технологичны, безопасны для здоровья операторов и не воспламеняются, а также легко удаляются с поверхности простым смывом. Однако это последнее свойство пенетрантов обусловливает и их основной недостаток: при смыве удаляется и часть жидкости из полостей дефектов, что снижает чувствительность контроля, поэтому пенетранты на водной основе применяют ограниченно.

Наиболее широко распространены пенетранты на основе различных органических жидкостей (керосина, скипидара, бензола, уайт-спирита и др.), которые требуют осторожности в обращении, но обеспечивают высокую чувствительность метода при выявлении дефектов.

Пенетрант целесообразно наносить с помощью пульверизатора или мягкой кисти, а продолжительность его выдержки независимо от размеров дефектов не должна превышать 5 мин.

Выявление дефектов. Различают пять способов выявления дефектов сварных соединений с использованием капиллярной дефектоскопии.

Порошковый («сухой») способ основан на использовании проявителя в виде сухого белого сорбента (каолина, мела и др.), поглощающего индикаторный пенетрант.

«Мокрый» способ связан с применением проявителя в виде концентрированной суспензии, приготовленной из белого порошка, размешанного (диспергированного) в летучем растворителе (керосине, бензоле и др.), воде или их смесях.

При выявлении дефекта с помощью слоя краски или лака используют проявитель, состоящий из пигментированного или бесцветного быстросохнущего раствора (например, коллодия), поглощающего (сорбирующего) индикаторный пенетрант.

Пленочный проявитель представляет собой бесцветную или белую индикаторную ленту с проявляющим слоем, поглощающим индикаторный пенетрант и легко отделяющимся вместе с индикаторным слоем дефекта от контролируемой поверхности. Такой проявитель технологичен, позволяет получать дефектограмму, анализировать ее отдельно от сварного соединения и сохранять как объективный документ контроля.

Существуют также два варианта самопроявляющего способа. В беспорошковом варианте самопроявляющего способа выявления дефектов сварное соединение погружают в индикаторную жидкость, в состав которой входят органический люминофор и летучий растворитель. После извлечения соединения из этой жидкости растворитель быстро испаряется, а кристаллы люминофора оседают на кромках дефекта. Эти кристаллы люминесцируют под воздействием ультрафиолетового излучения. Для устранения фонового свечения все соединение обрабатывают в специальном растворе ингибитора, гасящем люминесценцию на поверхности, но почти не влияющем на люминофор, проникший в капиллярные полости дефектов.

В другом варианте самопроявляющего способа выявления дефектов контролируемый объект после очистки и пропитки нагревают, исключая тем самым проявление. При нагревании специальная индикаторная жидкость выходит из полости дефекта, затвердевает и образует индикаторный след, люминесцирующий под воздействием ультрафиолетового излучения.

В люминесцентной дефектоскопии применяются все указанные способы выявления дефектов. Широко распространено проявление дефектов с помощью порошка или суспензии в силу простоты процесса и доступности материалов, но при этом оно и наименее эффективно. Однако чаще всего в ЛД используются пленочный и самопроявляющий способы выявления дефектов.

В цветовой дефектоскопии применяют в основном порошкообразные сорбенты в виде суспензий и белые проявляющие лаки, причем лаковые проявители обеспечивают более высокую чувствительность метода.

В зависимости от размеров выявляемых дефектов ГОСТ 18442 — 73 устанавливает четыре условных уровня чувствительности капиллярных методов контроля (табл. 7).

Для оценки условного уровня чувствительности используют тест-образцы с естественными или искусственными дефектами. Обычно тест-образцы содержат трещины, образовавшиеся при неправильном выборе режима шлифования.

Контролируемую поверхность со слоем проявителя сушат в потоке теплого воздуха, а затем дважды (через 5 и 20 мин после нанесения проявителя) производят ее осмотр, причем в случае использования ЛД — при освещении объекта ультрафиолетовым излучением, а в случае использования ЦД — при электрическом освещении или дневном свете. При этом освещенность на рабочем участке должна составлять не менее 500 лк.

Таблица 7. Условные уровни чувствительности капиллярных методов контроля
Условный уровень чувствительностиРазмеры дефектов, мкм
ШиринаГлубинаДлина
IМенее 1Менее 10Менее 0,1
II1 … 1010 … 1000,1 … 1
III10 … 100100 … 1 0001 … 10
IVБолее 100Более 1 000Более 10

Осмотр выполняют невооруженным глазом, а при необходимости применяют лупы, обеспечивающие малое увеличение (в 1,5 — 2 раза) и большое поле зрения. Обнаруженный индикаторный след изучают с помощью оптических приборов.

Рисунок индикаторных следов и топография их расположения позволяют довольно уверенно судить о виде дефектов.

Трещины любого происхождения, волосовины, заковы, неслитины, непровары, неспаи и оксидные пленки имеют вид четких (иногда прерывистых), окрашенных или люминесцирующих линий разной конфигурации.

Растрескивание металла и межкристаллитная коррозия на участках поверхности соединения крупнозернистых сплавов проявляются в виде группы отдельных коротких линий или их сетки.

О межкристаллитной коррозии мелкозернистых сплавов свидетельствуют пятна или размытые полосы.

Поры, язвенная коррозия, отдельные очаги межкристаллитной коррозии, выкрашивание материала и эрозионное повреждение поверхности соединения выявляются как отдельные точки или звездочки.

Индикаторный рисунок на поверхности сварного соединения может образовываться также различными допустимыми ее повреждениями или загрязнениями. В процессе выполнения контроля по дополнительным признакам необходимо отличать эти лжедефекты от истинных дефектов. Отбраковка сварных соединений производится в тех случаях, когда число и размеры выявленных при капиллярной дефектоскопии штрихов, линий и точек больше допустимых значений, установленных техническими условиями.

Заключительная очистка. По завершении контроля поверхности сварного соединения в целях очистки от проявителя протирают растворителями, промывают или очищают другими способами.

Аппаратура. Промышленностью выпускаются переносные и стационарные дефектоскопы различных типов. Среди них следует выделить переносной аэрозольный комплект КД-40ЛЦ, предназначенный для контроля сварных соединений в полевых, цеховых и лабораторных условиях цветным, люминесцентным и люминесцентно-цветным методами. Комплект включает в себя ультрафиолетовый облучатель КД-33Л и разборные аэрозольные баллоны, которые можно многократно заряжать дефектоскопическими материалами на зарядном стенде, также входящем в комплект. Все баллоны объединены в три набора. Один из наборов содержит баллоны, подогреваемые электрическим током, что позволяет производить контроль при отрицательных температурах окружающей среды (до 40 °С).

Для цветовой дефектоскопии при небольшом объеме работ используются переносные дефектоскопы ДМК-4 и ДАК-2Ц. Первый из них выполнен в виде чемодана с гнездами и секциями для размещения контрольных принадлежностей: емкостей с расходными растворителями, краской и жидкостью, пеналов с кистями и луп. Дефектоскоп ДМК-4 массой 7 кг имеет небольшие габаритные размеры (430 × 250 × 200 мм).

При контроле сварных соединений или узлов на стендах в цехах и лабораториях широко применяются стационарные дефектоскопы, позволяющие механизировать и автоматизировать ряд операций. Такие дефектоскопы снабжены рольгангами, транспортерами для подачи контролируемых объектов, распылительными камерами, мощными осветителями и другими устройствами.

Капиллярный метод контроля сварных швов

Контроль сварных швов является основным способом определить их качества. Существует несколько технологических контрольных методов, которые сегодня применяются при проверке сварочных швов, основной из них – капиллярный контроль. Он является неразрушающим и включает в себя несколько вариантов проведения данного процесса с использование разных расходных материалов. С его помощью определяются наружные поверхностные и внутренние дефекты или их отсутствие, а также изменения в зоне нагрева двух соединяемых заготовок.

Капиллярным контролем сварных соединений можно выявить практически все дефекты шва: поры, трещины, раковины, прожоги и непровары. Можно определить, как расположен дефект в плане его ориентации к поверхности сварного шва, можно определить размеры изъянов. Капиллярный метод контроля используется при сварке любых металлов (черных и цветных), пластмасс, стекла, керамики и так далее. То есть, это контроль имеет обширную область применения при определении дефектов в сварочных швах.

Суть всего контрольного процесса заключается в том, что, используя специальные жидкости (индикаторы), которые имеют свойство глубоко проникать в любые материалы, если в них есть пустоты, просачиваться сквозь него и появляться на противоположной стороне от места их нанесения. То есть, проникая в тело металла, индикаторные жидкости оставляют следы, по которым и определяются дефекты. Такие следы можно обнаружить визуально, а можно использовать для их определения специальные приборы преобразователи. Все современные методы контроля сварных швов капиллярным способом регламентируются ГОСТами.

Классификация капиллярного контроля

Существует две категории капиллярного контроля сварных швов: основные и комбинированные. Первый подразумевает под собой чисто капиллярный контроль, второй – это объединение нескольких неразрушающих способов контроля, в состав которых входит и капиллярный.

К основным методам можно отнести:

  • В зависимости от того, какой проникающий раствор для этого используется: это растворы и фильтрующие суспензии.
  • В зависимости от того, каким способом считывать получаемую информацию: цветовой (он же хроматический), яркостный (он же ахроматический), люминесцентный и люминесцентно-хроматический.

К комбинированным: электростатический, магнитный, электроиндукционный, радиационная технология поглощения или излучения. Во всех них используются проникающие индикаторные жидкости, то есть, применяется капиллярный вариант, но считывание информации происходит по-разному. В основном же на группы эта категория делится по характеру воздействия на поверхность сварного шва.

Как применяется технология капиллярной дефектоскопии

В принцип метод достаточно прост. Необходимо поверхность сварочного шва очистить и хорошо высушить. После этого на нее наносится проникающая жидкость, остатки которой через некоторое время надо полностью удалить. Остальная же часть проникнет внутрь тела металла. Далее на обработанную поверхность наносится проявитель, который просто вытянет из дефектов оставшуюся в металле жидкость. Она проявится на поверхности в виде рисунков, которые и обозначат количество, форму и вид изъяна. Но это просто всего лишь на словах. Сам же процесс – достаточно серьезное мероприятия, поэтому к нему надо относиться со всем внимание и точно следовать технологически этапам, принимая во внимание нюансы.

Подготовка сварного шва к контролю

Как и в случае со сваркой, металл соединения необходимо очистить от всех загрязнений. Для этого можно использовать химический способ или механический, обычно, как показывает практика, специалисты применяют комбинацию из двух вариантов. То есть, зачищают металлическую поверхность наждачкой или железной щеткой, а после обрабатывают растворителем или спиртом.

Правда, механическую чистку рекомендуется применять лишь в том случае, если валик имеет пористую поверхность, или она имеет перепады и глубокие подрезы. Все дело в том, что поверхностные дефекты сварного шва при обработке жесткими материалами затираются, поэтому и не проявляются после их обработки проникающими жидкостями.

Что касается химикатов, которые используются для чистки поверхности шва, то их необходимо обязательно после окончания чистящего процесса удалять тепловой водой или другими реагентами. Просто они могут вступать в реакцию с жидкостями для контроля, тем самым выдавая неверные показатели. И последнее – это хорошо просушить поверхность металла. Таким образом, достигается полное отсутствие воды и растворителей.

Нанесение индикатора

Существует несколько способов нанесения индикаторной жидкости.

  • Обычный капиллярный метод – это когда жидкость наносится на проверяемую поверхность, и она сама по капиллярам металла проникает внутрь валика. Нанесение может производиться обычным смачивание, капельным распылением или струей, погружением сваренных заготовок в индикаторную жидкость.
  • Компрессионный – это когда жидкость подается на поверхность сварного шва под давлением. Таким образом, она быстрее проникает внутрь дефектов, вытесняя из них воздух.
  • Вакуумный – это противоположность компрессионному. В данном случае заготовки помещаются в вакуумную установку, вследствие чего из пор, раковин и трещин отсасывается воздух. Далее наносится жидкий индикатор, который заполняет их, потому что внутри полостей давление намного меньше, чем атмосферное.
  • Деформационный. На индикатор воздействуют, к примеру, звуковыми волнами, под действием которых он и проникает внутрь металла. При этом размер изъяна немного увеличивается, то есть, происходит его деформация.
  • Ультразвуковой – это когда заполнение производится под действием ультразвука.

Все данные способы проникновения жидкости в тело металла должны производиться при температуре 10-50С.

Очистка от индикатора

Проводя очистку поверхности валика, необходимо понимать, что нельзя удалять жидкость с поверхностных дефектов. Чем можно чистить.

  • Теплой водой, температура которой не превышает +50С. Это можно проводить при помощи тряпки или губки.
  • Растворителем. Сначала поверхность высушивают, а затем тряпкой, смоченной в растворителе, производится протирание поверхности.
  • Эмульгаторами: на водной или масляной основе. Сначала удаляется с поверхности проникающая жидкость, и сразу наносятся эмульгаторы, которые снимаются тряпкой.
  • Комбинированный вариант. Сначала поверхность омывается водой, после используется растворитель.

Обязательно поверхность сварочного шва после чистки индикаторной жидкости высушивается. Здесь можно использовать разные методы, главное – не повышать температуру валика выше +50С. К примеру, можно просто протереть поверхность неворсистой тряпочкой, можно просто нагреть заготовки, или использовать фен для удаления влаги.

Нанесение проявителя

Этот процесс в технологии капиллярного контроля сварных соединений должен проводиться сразу же после окончания сушки металла после очищения его поверхности. Для этого можно использовать разные проявители.

  • Сухой. Его наносят на поверхность равномерным слоем без утолщений или снижения толщины. Для этого обычно используется обычное напыление. Важно – данный вид проявителя применяется только в сочетании флуоресцентными индикаторами.
  • Жидкий на основе водной суспензии. Его наносят или методом распыления, или замачиванием валика, путем утопления свариваемых заготовок в жидкий проявитель. Важно – утопление производится в самые короткие сроки, после чего вся жидкость удаляется методом принудительной просушки.
  • Жидкий на основе растворителя. Наносится обычным распылением так, чтобы слой проявителя на поверхности остался равномерным.
  • Жидкий в виде водного раствора. Все то же самое, что и в случае проявителя на основе суспензии.
Читать еще:  Считаем, сколько может выдержать сварочный шов

Обычно процесс проявления длиться 10-30 минут в зависимости от выбранного материала. Если появляется необходимость, то время можно увеличить.

Способы выявления дефектов сварного шва

Процесс выявления можно начинать сразу после нанесения проявителя. Но лучше, если после того как полностью закончится процесс проявления. Для этого можно использовать увеличительные стекла (лупы) или специальные очки.

Если капиллярная дефектоскопия сварного шва проводилась с помощью флуоресцентных индикаторов, то использовать для контроля специальные очки фотохроматического типа не надо. Просто оператор должен проводить контроль в темном помещении. Он должен в него войти и в течение 5 минут привыкнуть к темноте. После чего и начать процесс выявления дефектов. Сам контроль проводится под действием ультрафиолетового освещения. Оно может быть общим или зонированным (освещается только участок, где лежит сваренная конструкция). Самое важное, чтобы в поле зрения оператора не попадали отсвечивающие предметы, их просто не должно быть в помещении.

Если используются цветные индикаторы, то их проявление можно наблюдать и при дневном, и при искусственном свете. Главное, чтобы на поверхности контролируемого металла не было бликов, а мощность светового потока составляло не менее 500 лк.

Повторный контроль

Если по каким-то причинам итоги капиллярного контроля оказались неудовлетворительными, то можно провести повторный контроль. Он проводится точно так же, как и первый, с использованием все тех же технологий и индикаторов. Нельзя использовать индикаторные жидкости другой марки от другого производителя. Самое важное – это очистить металлическую поверхность от старых материалов (проявителя и индикатора). Все остальные действия от очистки до проявления проводятся точно также.

Контроль капиллярный керосином

Керосин является полярно-активной жидкостью с низкой вязкостью, отсюда и большая его проникающая способность. Обычно с его помощью выискиваются дефекты сварных швов диаметром 0,1 мм при толщине стыка в 25 мм. И раньше, и сейчас керосин используется для контроля сварки резервуаров, которые работают под давлением. Сам процесс достаточно простой.

Для этого понадобиться керосин и меловой раствор, который наносится на обратную сторону сварного шва. По сути, раствор будет выполнять функции индикатора, на котором проявятся керосиновые пятна. Саму жидкость можно распылить на поверхность, смочить ею валик или просто уложить по стыку смоченную в керосине ленты или тряпку. После определенного времени с обратной стороны начнут проявляться масляные пятна, хорошо видимые на меловой поверхности. Нередко в керосин добавляют яркие пигменты, чтобы увеличить чувствительность контроля.

Как и все капиллярные способы контроля с использование индикаторных жидкостей, керосин наносится на испытуемые поверхности сварных валиков разными способами.

  • Вакуумным, для чего используются специальные вакуумные установки переносного типа. Их устанавливают со стороны нанесенной меловой смеси.
  • Пневматический. Поверхность валика, смоченную керосином, обдувают потоком сжатого воздуха при давлении 0,3-0,4 МПа.
  • Вибрационный. Проникновение материала проходит под действием ультразвуковых колебаний.

Используя керосин при капиллярном контроле сварочных швов, необходимо применять материал с большой чистотой. Ведь примеси только увеличивают вязкость керосина, что делает его проникающие свойства низкими. А это может привести к неопределению самых маленьких дефектов, что отразиться на искаженной информации о качестве сварочного шва.

Капиллярные способы контроля на сегодняшний день считаются самыми простыми, но в то же время самыми дешевыми и эффективными. Именно поэтому они чаще других способов сегодня используются при проверке сварочных конструкций.

Капиллярный контроль – простой и надёжный способ обнаружения трещин и раковин

В капиллярном контроле (контроле проникающими веществами, сокращённо – ПВК) всё построено на проникающей способности специальных жидкостей. Заполняя поверхностные дефектов, они оставляют чёткий индикаторный рисунок из полос, извилин, точек или расплывчатых пятен. Метод особенно эффективно выявляет поры, заусенцы, трещины, раковины, межкристаллитную коррозию, риски, шлаковые включения, царапины и пр. При соблюдении инструкций, отражённых в РД 13-06-2006, ГОСТ 18442-80 и иной документации, становится возможным выявление даже мелких дефектов. Попутно можно определить их точное расположение и оценить протяжённость. Считается, что ПВК хуже справляется с обнаружением сквозных дефектов — для их выявления лучше подходит течеискание (ПВТ). Оба методы объединены в один вид НК — контроль проникающими веществами.

Как метод дефектоскопии ручной и механизированный капиллярный контроль чрезвычайно универсален. Ограничений по форме и габаритам объектов нет. Чёрные и цветные металлы, неферромагнитные сплавы, керамические изделия, пластмассы и даже стекло – всё это может быть проверено при помощи данного вида НК. В технических заданиях на проведение технического освидетельствования и экспертизы промышленной безопасности трубопроводов и резервуаров он часто упоминается в качестве дополнительного. Именно этот метод предпочитают в случаях, когда магнитопорошковая дефектоскопия объектов из ферромагнитных сплавов не способна обеспечить требуемую чувствительность. К тому же далеко не все объекты в эксплуатации можно намагничивать.

В зависимости от минимального размера дефектов, поддающихся выявлению, капиллярный контроль может соответствовать одному из следующих классов чувствительности:

  • I (в пределах 1 мкм);
  • II (от 1 до 10 мкм);
  • III (больше 10, но меньше 100 мкм);
  • IV (больше 100, но в пределах 500 мкм).

Дополнительно предусмотрен ненормируемый технологический класс.

При определении чувствительности учитывается также тип освещения (УФ-облучённость или дополнительная подсветка с люминесцентными лампами либо лампами накаливания).

Преимущества и недостатки капиллярного контроля

Слабые стороны у этого метода тоже есть и заключаются они прежде всего в том, что:

  • индикаторные жидкости не являются на 100% безвредными. Без средств индивидуальной защиты органов дыхания, органов зрения и слизистых оболочек работать нельзя. В противном случае – заболевания дыхательных путей и не только вам обеспечены. Да, производители материалов для цветного метода дефектоскопии постоянно работают над тем, чтобы уменьшить токсичность испарений, минимизировать запах и пр. Однако даже топовые производители пока не достигли идеального результата, а у бюджетных марок всё ещё хуже;
  • контроль возможен только тогда, когда есть беспрепятственный доступ к поверхности;
  • нужно постоянно поддерживать запасы расходников. Каким бы экономичным не был расход, материалы нужно вовремя подвозить, а на отдалённых объектах (к примеру, нефтегазоконденсатных месторождениях) с этим могут быть трудности;
  • выявлению подлежат только поверхностные и сквозные полости с глубиной распространения, превышающей ширину раскрытия;
  • технология очень требовательна к качеству подготовки поверхности. Нужно тщательным образом избавиться от брызг металла, нагара, шлака, ржавчины, старых ЛКМ, жирных разводов, масла, пыли и иных загрязнений. Шероховатость поверхности не должна превышать Ra 3,2 мкм (Rz 20 мкм);
  • капиллярный метод контроля требователен к температуре исследуемой поверхности и окружающего воздуха. Допустимые значения указываются в руководящих документах на контроль. В документе РД 13-06-2006, например, указан диапазон от -40 до +40 ˚С, хотя на практике, конечно, при таких низких температурах контроль едва ли возможен.

Помещения, в которых проводится ПВК, должны быть подключены к холодному и горячему водоснабжению. Обязательно наличие приточно-вытяжной вентиляции (с 3-кратным воздухообменом) и вытяжными зондами над рабочими зонами. Необходимо оснастить его ваннами, инструментами для нанесения материалов, очистки и сушки объектов. Понадобятся также поддоны для сбора воды. Если испытаниям подвергаются крупногабаритные изделия, обязательно наличие грузоподъёмных механизмов, подмостей, передвижных вышек и пр. Дополнительно могут понадобиться УФ-светильники, воздушные и инфракрасные обогреватели и т.д.

Даже к стенам помещения есть свои требования – для отделки нужно использовать легко моющиеся покрытия.

Методы капиллярного контроля

Согласно традиционной классификации они подразделяются на несколько групп:

  • основные (собственно ПВК) и комбинированные (ПВК плюс дополнительный метод неразрушающего контроля). Примеры из последней категории – капиллярно-магнитный, капиллярно-индукционный, капиллярно-электростатический, капиллярно-радиационный поглощения, капиллярно-радиационный излучения. Справедливости ради надо признать, что комбинированные методы применяются крайне редко;
  • методы проникающих растворов и фильтрующихся суспензий. Первая разновидность капиллярного контроля – классический ПВК с пенетрантом и проявителем, во втором случае к пенетранту добавляется нерастворимый порошок, которому свойствен повышенный цветовой контраст и люминесценция. Дополнительного проявления не нужно. Отфильтрованные частицы скапливаются у устья несплошности, образуя индикаторный след. Данный способ обладает меньшей чувствительностью;
  • на яркостные (ахроматические), цветные (хроматические), люминесцентные и люминесцентно-цветные. Разберём их подробнее.

Яркостный капиллярный контроль считается самым простым. Его также называют меловым или керасино-меловым пробоем. Один из старейших способов дефектоскопии, где его уже много десятилетий применяют для шеек колёсных пар и других деталей подвижного состава железнодорожного транспорта. В качестве проявителя используется мел либо каолин, в качестве пенетранта – керосин. Дёшево и сердито. И очень эффективно для поиска трещин и пор.

Цветной метод базируется на использовании ярко окрашенных жидкостей. Белый проявитель, красный пенетрант – такой контраст легко и быстро «считывается» дефектоскопистом. Подходит для испытаний даже при обычном дневном свете.

Люминесцентный метод – это, если можно так выразиться, цветной метод «на максималках». Проводится в затемнённом помещении с применением ультрафиолетового освещения с длиной волны 365 нм. Индикаторная жидкость содержит люминофор, который на тёмном фоне светится сильным жёлто-зелёным цветом. Данному способу свойственна повышенная чувствительность: люминесцентный капиллярный контроль сварных соединений, околошовной зоны и основного металла способен выявлять дефекты с раскрытием всего 0,1 мкм и более.

Наконец, люминесцентно-цветной метод – самый чувствительный из всех. Предполагает регистрацию контраста между цветным индикаторным рисунком и люминесцентным. Как в видимом спектре, так и длинноволновом УФ-излучении. Сочетание источников освещение помогает регистрировать мельчайшие несплошности.

Порядок проведения

Цветная дефектоскопия сварных швов, околошовной зоны и основного металла выполняется с учётом критериев допустимости дефектов, отражённых в руководящей документации. Трактовать результаты можно по индикаторному рисунку и по фактическим параметрам трещин, раковин или пор, чётко обозначившихся после удаления всех рабочих жидкостей. В целом, основанием для положительной оценки является отсутствие протяжённых следов удлинённого вида. Что касается одиночных несплошностей, то тут всё, повторимся, зависит от инструкции.

Так, в техкарте на капиллярный контроль могут быть предписаны следующие способы заполнения полостей индикаторным веществом:

  • собственно капиллярный. Пенетрант проникает самопроизвольно. Его можно распылять, наносить кистью, можно наполнить им бак и полностью погрузить в него объект;
  • компрессионный. Нагнетается избыточное давление, под действием чего жидкость заполняет полости;
  • вакуумный. Давление в полости опускается ниже атмосферного, и жидкость проникает в неё быстрее;
  • ультразвуковой. Всю «работу делают» акустические волны;
  • деформационный. Объект подвергается воздействию упругих звуковых колебаний либо находится под статической нагрузкой. Это способствует увеличению ширины раскрытия дефекта, и пенетрант легче проникает в него.

Ещё один «подводный камень» при контроле капиллярным методом: дефектоскопист должен знать, как отличить индикаторный рисунок на месте реальных дефектов от ложных следов. Этим «страдают» участки, на которых:

  • повреждена микроструктура, что приводит к возникновению рисок, заусенцев, забоин, сколов окисной плёнки, коррозии и эрозии;
  • изменён микрорельеф объекта и его и форма – в силу специфики технологий производства. Так, на литых деталях могут остаться характерные складки. На сварных швах – наплывы. На металле в целом – следы от режущего либо шлифовального инструмента;
  • поверхность загрязнена. Капиллярный метод контроля сварных соединений очень требователен к качеству очистки. Важно следить, чтобы на поверхности не было пересохшего пенетранта, волокон от ветоши, жировых разводов, пятен от перчаток;
  • имела место слабая прессовая просадка.

Если возникают сомнения, для более внимательного изучения индикаторного следа разрешено использовать лупу с 2–7-кратным увеличением. Если и это не помогает, рекомендовано проведение повторного контроля.

Аппаратура и материалы для цветной дефектоскопии

Для полноценного проведения контроля могут понадобиться следующие технические средства и принадлежности:

  • контрольные образцы (обязательно с паспортом и отметкой о метрологическом обслуживании) для проверки индикаторных жидкостей;
  • ультрафиолетовые фонари или светильники (для работы с люминесцентными материалами);
  • светильники отражённого либо рассеянного светораспределения (для капиллярного метода контроля запрещена прямая подсветка);
  • лупы (с увеличением 6–10 крат) и иные оптические приборы (1,25–30 крат) для осмотра дефектов;
  • эталоны шероховатости – для оценки поверхности;
  • пульверизаторы, краскораспылители и компрессоры (для пневматических агрегатов);
  • кисти;
  • салфетки, ветошь, марля, губки и пр.

Особую категорию составляют линии для автоматизированного капиллярного контроля деталей. Это блочно-модульные стационарные установки, состоящие из нескольких баков, смотровой кабины, источников дополнительного освещения и пр.

Из необходимых аксессуаров также отметим СИЗ – очки, перчатки, респираторы и пр.

Но главное для ПВК – это, конечно же, дефектоскопические материалы, а именно:

  • пенетрант – индикаторная жидкость, заполняющая устье дефекта. Различаются по проникающей способности, вязкости и поверхностному натяжению;
  • проявитель – жидкость, которая образует на поверхности равномерное матовое покрытие белого цвета. Пенетрант при этом не вымывается из полости дефектов, а потому особенно чётко виден на светлом фоне;
  • очиститель – жидкость для очистки объекта и удаления лишнего объёма индикаторной жидкости.

Самые популярные материалы для капиллярного контроля выпускаются под брендами Magnaflux, Sherwin, Helling, MR Chemie, Karl Deutsch и др. Поставляются в аэрозольных баллончиках (стандартный объём – 400 мл), канистрах и даже бочках. Пенетрант, проявитель и очиститель можно приобрести по отдельности, а можно – целым набором. К примеру, в комплекте Spotcheck предусмотрены все необходимые баллончики, а также безворсовая ткань и сумка.

Если не приобретать готовые материалы, а приготавливать их самостоятельно, то делать это можно только в специально оборудованном помещении с вытяжкой.

Помимо уже упомянутых расходников, для капиллярного метода контроля сварных швов по-прежнему востребованы такие проверенные временем материалы, как керосин, ацетон, этиловый спирт, каолин, ксилол и пр. Так, если в отапливаемых помещениях для очистки поверхности можно использовать воду, то при отрицательных температурах не обойтись без спирта.

Исчерпывающий перечень расходников доступен в приложении №5 к методическим рекомендациям РД 13-06-2006.

Сообщество специалистов по капиллярному методу контроля

На форуме «Дефектоскопист.ру» зарегистрированы тысячи специалистов ПВК (ЦД), аттестованных и сертифицированных по СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика). В специальном разделе на форуме доступны десятки обсуждения по теоретическим и практическим аспектам данного вида неразрушающего контроля. Ему также посвящена отдельная категория в электронной библиотеке «Архиус», где собрана вся актуальная нормативная документация. Если у вас есть какой-либо вопрос, вы можете поискать необходимую информацию на нашем сайте – либо создать новую тему и изложить свою проблему. Коллеги обязательно подскажут, помогут, направят на путь истинный.

Чтобы быть успешным специалистом капиллярного контроля, зарегистрируйтесь на форуме «Дефектоскопист.ру» и следите за обновлениями!

Капиллярная дефектоскопия сварных швов и соединений

После монтажа трубопроводов, технических емкостей важно проверить герметичность соединения, чтобы не было утечки транспортируемых сред, конструкция не разрушалась под давлением. Структурные дефекты сварки, микротрещины в зоне термического влияния выявляют методами капиллярного контроля сварных швов. Для проведения исследований используют контрастные, легко проникающие в микродефекты жидкости. Непровары, свищи, прожоги на поверхности шва видны сразу. Внутренние несплошности металлов и неметаллов (капрона, ПВХ, полиэтилена) определяют с применением аппаратуры для неразрушающей диагностики сварных соединений. Контроль с использованием красителей помогает обнаружить дефект, точно установить размеры структурных нарушений. Благодаря неразрушающему цветовому контролю удается обнаружить критические структурные изменения на сварном соединении и около него, в зоне термического влияния. При нарушении технологии сварки, перегреве у шва образуются остаточные напряжения, приводящие к образованию трещин.

Что такое капиллярный контроль

По сути, метод заключается в заполнении пустот в шве, трещин в зоне термовлияния специальной жидкостью. Контраст появляется на обратной стороне шва, если нарушена герметичность. Процедура капиллярного контроля сварных соединений регламентирована ГОСТ 18442-80. Определены классы чувствительности по минимальному размеру выявляемых несплошностей:

  • I класс – определяют дефекты до одного микрона;
  • II – от 1 мкм до 10;
  • III – 10–100;
  • IV – 100–500;
  • для технологического класса размер дефектов не нормируют.
Читать еще:  Сварка вертикальных швов

Визуальный капиллярный контроль не требует специальной подготовки контролеров. На сварные соединения сначала наносят индикаторный пенетрант, затем проявитель.

Методы капиллярного контроля

Существует несколько способов диагностики:

  • путем нанесения индикаторов с последующим визуальным осмотром области сварки (основные);
  • с использованием аппаратуры, определяющей внутренние пустоты.

Выбор метода капиллярной проверки зависит:

  • от нагрузки, которую будет испытывать сварной шов;
  • толщины свариваемых заготовок;
  • вида сплава (некоторые металлы склонны к образованию трещин, требуют пристального внимания).

Обе группы методов стоит рассмотреть подробно, у каждого имеются технологические особенности воздействия на исследуемую поверхность.

Основные

Различаются по типу используемого индикаторного состава:

  1. Проникающие растворы заполняют имеющиеся в шве или около него микротрещины. Применяются для плотных сплавов, имеющих мелкозернистую структуру.
  2. Фильтрующие суспензии созданы для капиллярного контроля пористых металлов и неметаллов. Помимо проникающей жидкости содержат цветные вещества размером до тысячных долей микрона. Когда проникающая жидкость впитывается в зоне дефектов, частицы остаются видимыми. По количеству красителя можно судить о размере несплошностей.

По химическому составу, спектральным особенностям красители бывают:

  • яркостные на основе керосина вызывают потемнение мела в несплошностях, дефектных местах соединений;
  • цветные красного цвета быстро вызывают зрительную реакцию дефектоскописта, хорошо различимы на фоне проявителя;
  • люминесцентные содержат раствор или суспензию люминофора, хорошо видимы в ультрафиолетовом спектре;
  • люминесцентно-цветные содержат два типа контраста, обладают высокой чувствительностью, помогают выявлять внутренние дефекты с использованием диагностического звукового, магнитного или лучевого оборудования.

Тип красителя, класс чувствительности проникающей жидкости или суспензии указывается на этикетке.

Комбинированные

Цветовую капиллярную диагностики для точности определения внутреннего состояния сварного шва нередко совмещают с другими методами неразрушающего контроля:

  • капиллярно-радиационный с использованием пенетрантов, поглощающих излучение или способных светиться;
  • капиллярно-электростатический основан на способности проникающих жидкостей концентрировать наэлектризованные частички металла;
  • капиллярно-электроразрядный выявляет несплошности по изменению поверхностного разряда в местах, заполненных пенетрантом;
  • капиллярно-электроиндуктивный основан на изменении электропроводности заполненных контрастом дефектов;
  • капиллярно-магнитный проводится с использованием пенетрантов с намагничивающимися наполнителями, они оставляют след на несплошностях;
  • капиллярно-акустический выявляет дефекты, заполненные проникающей жидкости, ультразвуком по акустической эмиссии.

Технология проведения капиллярной дефектоскопии

Процесс состоит из нескольких этапов, нехарактерных для других методов неразрушающей диагностики. Процедура должна соответствовать стандарту, тогда результаты будут достоверными. Для капиллярной дефектоскопии сварных швов помимо комплекта специальных жидкостей нужна вода, нетканые или бумажные салфетки, не оставляющие больших ворсинок. Индикатор проявляется в виде пятен, для их расшифровки дефектосписты пользуются лупами, фонариками.

Очистка поверхности

Сварной шов зачищают аккуратно, чтобы частички исследуемого материала не заполнили области дефектов. Рекомендуют сочетать механический и химический способы очистки поверхности с использованием обезжиривающих растворителей, спирта. Их смывают водой, поверхность высушивают.

Нанесение индикаторного вещества

Исследуемые образцы окрашивают с одной стороны или полностью погружают в раствор. Жидкость в основном производится в аэрозольных баллончиках, струя подается на поверхность под давлением. Некоторые смеси наносят кисточками. Для капиллярного метода контроля сварных швов используют вакуумные камеры, ультразвук, компрессорные установки, чтобы индикатор лучше проникал внутрь несплошностей.

Есть ограничения по температуре проведения диагностики: не ниже +5°С, не выше +50°С. Время выдержки контраста зависит от применяемого пенетранта, от 5 минут до получаса.

Промежуточная очистка

Лишнюю жидкость или суспензию удаляют так, чтобы она не вымывалась из дефектов, очищают прилегающие к исследуемой области участки. Используют впитывающие чистые салфетки, воду или специальные очистители. Затем снова нужно просушить сварное соединение.

Нанесение проявителя

Проявители бывают двух типов: сухие или жидкостные на водной или органической основе. Чаще это вещество белого цвета, на нем хорошо видны контрастные пятна. В зависимости от типа проявителя поврежденные участки станут видимыми через 5–30 минут.

Процесс выявления дефектов

Финальной операцией капиллярного метода контроля сварных швов является расшифровка получившегося рисунка. Учитывается размер индикаторного следа, интенсивность окраски. Чем ярче цвет, тем глубже раковина, непровар, трещина. Данные заносятся в журнал проверок с указанием даты проведения диагностики, данных дефектоскописта.

Повторный капиллярный контроль

Вторичная диагностика необходима:

  • когда есть сомнения в точности первичного контроля;
  • после проведения ремонтных работ, перевара шва.

Важно очистить сварные швы, прилегающую зону от следов специальных жидкостей, используемых для первичной диагностики. При повторной проверке смеси не меняют. Пользуются теми же комплектами спецжидкостей.

Капиллярный метод – цветная дефектоскопия

ПО «Волгоградский Завод Резервуарных Конструкций» предлагает услугу по цветной дефектоскопии сварных швов. Наше предприятие владеет специальными материалами и оборудованием для оказания данной услуги, а так же квалифицированными специалистами в данной области неразрушающего контроля.

ПВК как вид неразрушающего контроля

Капиллярная дефектоскопия – это метод, основанный на проникновении жидкости с малым поверхностным натяжением внутрь дефектного участка под действием капиллярного эффекта, вследствие этого повышается цветоконтрастность поврежденного участка, по которому можно судить о степени поврежденности соединения.

Данный способ контроля может выявлять:

  • холодные и горячие трещины в швах соединения;
  • излишнюю пористость сварного шва;
  • непровары;
  • раковины и др.

Преимущества метода:

  • Применим для любых видов металла и сплавов, используемых в конструкциях различного назначения: трубопроводы магистральные, резервуары, силосы и др. объекты из металла. Его применяют даже для выявления дефектов на керамических, стеклянных и пластмассовых изделиях.
  • Позволяет определить конкретное расположение дефекта и его размеры.
  • Относительно дешевый вид неразрушающего контроля.
  • Высокая точность и наглядность, в сравнении с некоторыми другими видами дефектоскопии.
  • Не требует затратных подготовительных работ.
  • Быстрый и безопасный.

Методы капиллярного контролясварных швов

Различают методы основные и комбинированные. К основному можно отнести контроль, который производится только капиллярным проникновением специальных веществ в соединение. Тогда логично, что к комбинированному методу относят те обследования, где контроль осуществляется двумя и более неразрушающими методами контроля.

Комбинированные методы контроля

Такие методы можно классифицировать в зависимости от способа воздействия на исследуемое соединение.

  • Капиллярно-магнитный.
  • Капиллярно-радиационный метод излучения.
  • Капиллярно-электростатический.
  • Капиллярно-радиационный метод поглощения.
  • Капиллярно-индукционный.

Материалы для дефектоскопии сварных швов

В современной промышленности для капиллярного контроля ПВКиспользуются специальные составы. Их называют пенетрантами (от англ. penetrant — проникающий). Специальные препараты не только обладают лучшей проникающей способностью, но имеют заметную окраску. Кроме того, в целях объективного контроля, чёткие цветные изображения становятся доступны для фото и видео регистрации. Некоторые виды содержат люминесцентные компоненты. С их помощью в ультрафиолетовом свете становятся заметными и контрастными микроскопические участки, заполненные пенетрантом.

Кроме пенетнрата, который проникает в полости и трещины, применяются и проявители. Это жидкость, которая при контакте с пенетрантом изменяет цвет и становится заметной. Проявители, называемые ещё индикаторами, используют для определения сквозных изъянов сварного шва или для увеличения чёткости изображения дефектных участков.

Для сквозной дефектации, как и в случае с керосином, проявитель наносится на одну сторону шва, а пенетрат — на другую. При наличии сквозной трещины или полости индикаторная жидкость окрасится контрастным цветом.

Индикаторные жидкости для ПВК контроля различаются не только по цвету и способности к свечению, но и по проникающей способности, называемой чувствительностью.

Технология проведения контроля

Для проведения капиллярного контроля сварных соединений методом цветной дефектоскопии необходимо выполнить четыре этапы капиллярного контроля:

  • Подготовка рабочего места и осмотр исследуемых поверхностей;
  • Очистка обследуемойповерхности;
  • Высушивание подготовленной поверхности для получения результатов более высокого качества;
  • Нанесение специальных составов индикаторов;
  • Выявление дефектовсварки, проведение измерения величина дефекта и его характера;
  • Занесение результатов в журнал, отчет, протокол или другой отчетный документ.

При очистке поверхности с нее удаляют пыль, пятна, верхние загрязнения (ржавчина, окалина, краски и др.).

Следует понимать, что очистка может производиться при помощи специальных химических очищающих веществ и только в редких случаях при помощи специального механического оборудования.

Подготовка к проведению капиллярного контроля

Рабочее место должно соответствовать требованиям ОТ, ПТБ и ГОСТ по состоянию окружающей среды, наличию средств защиты, инструментов и препаратов.

Очистка поверхности производится сначала механическим способом, затем растворителем или специальным составом, входящим в комплект индикаторных жидкостей. Часто состав растворителя повышает информативность дефектоскопии, так как учитывает индивидуальные свойства пенетранта и проявителя (поверхностное натяжение, растворимость, вязкость, смешиваемость).

а – имеющийся дефект; б – нанесение пенетранта; в – удаление пенетранта с изделия; г – нанесение проявителя и проявление; 1 – изделие; 2 – дефект; 3 – пенетрант; 4 – проявитель; 5 – след дефекта (окрашенный проявитель).

После подготовки участка приступают к нанесению пенетранта в соответствии с инструкцией по его применению и приступают к ПВК расшифровке. При проведении неразрушающего контроля следует избегать излишних количеств и подтёков — они будут препятствовать формированию чёткой картины локализации дефектов. После нанесения пенетранта, при наличии в комплекте средств индикатора — его наносят сверху или с противоположной стороны в случае выявления только сквозных дефектов.

Скопления пенетранта с прореагировавшим проявителем показывают наличие и величину трещин, пор и непроваров. Для регистрации результатов метода неразрушающего контроля линейные размеры полостей измеряют инструментально.

В ряде случаев требуется регистрация результатов с помощью фотосъёмки и применение измерительных эталонов.

Ограничения методов капиллярной дефектоскопии сварных швов

Капиллярная цветная дефектоскопия — довольно универсальный метод неразрушающего контроля. При соблюдении технологий и применении соответствующих препаратов его можно использовать для любых материалов и видов сварки. Однако у данного способа есть индивидуальные ограничения:

  • Пенетрат проникает в капилляры, глубина которых в 10 раз больше их ширины;
  • Внутренние дефекты шва методом цветной дефектоскопии не выявляются, если полости и рыхлые участки герметичны;
  • Капиллярная дефектоскопия сварных швов не позволяет точно определить глубину полости или трещины;
  • При хорошей наглядности и приемлемой точности выявления изъянов, метод не даёт цифровой точности измерения размеров;
  • Метод не позволяет определять трещины и поры с линейными размерами менее 0,1 — 0,2 мкм.

В силу указанных причин, для более точного и информативного выявления дефектов, применяют, где это необходимо, другие способы контроля сварных швов.

Контроль капиллярныйс применением керосина

В прежние времена для нахождения дефектов использовали керосин. Эта жидкость широко применялась в быту и технике. Керосин почти не испаряется в обычных условиях, но обладает хорошей проникающей способностью, благодаря низкой вязкости и высокой полярности.

Т.к. керосин бесцветный, то сварщики применяли мел и другие вещества для корректной оценки наличия и величины раковин, трещин и полостей.

Керосиновый способ, благодаря своей простоте и сегодня ещё применяется на практике. Чаще всего такой метод используют для поиска сквозных дефектов резервуаров, работающих под давлением, также используется при испытаниях топливных отсеков или изделий с различными сварными соединениями.

Порядок осмотра и чувствительность при керосиновом способе контроля:

Капиллярный контроль сварных швов и соединений. Течеискание. Проникающий контроль

Проведение неразрушающего капилярного контроля проникающими веществами (течеискание) сварных швов и соединений, околошовной зоны, основного металла. Услуга предоставляется в Москве, а также на всей территории России.

  • Выезд специалистов НК на объект возможен на следующий день после получения заявки.
  • Испытания и измерения проводят сотрудники, аттестованные на II и III уровень квалификации.
  • Заключениям о соответствии объекта проверки требованиям технической документации, выданным ЛНК компании СК «Олимп», доверяет Ростехнадзор и другие контролирующие ведомства.

Лаборатория аттестована на проведение капиллярного контроля и течеискания на следующих объектах:

  • строительных конструкциях;
  • трубопроводах;
  • оборудовании опасных производств;
  • объектах котлонадзора;
  • системах газоснабжения;
  • оборудовании нефтегазовой промышленности;
  • подъемных сооружениях.

Капиллярный контроль: физическая природа метода

Капиллярная дефектоскопия применяется в тех случаях, когда необходимо выявить поверхностные или сквозные дефекты, или повреждения. Капиллярный контроль проводят при температуре окружающего воздуха от минус 40ºС до +40ºС и относительной влажностью воздуха не более 90% на элементах, температура контролируемой поверхности которых не более 40ºС, а шероховатость поверхности не более Rz20, с использованием специальных растворов или суспензий, ветоши, просмотровой и измерительной луп, линейки и пр. Суть капиллярного метода состоит в том, что суспензия, окрашивая материал, глубоко проникает внутрь дефектов или повреждений на поверхности исследуемого объекта, а высокий контраст окраса пенетранта на фоне проявителя, дает возможность обнаружить дефекты с раскрытием менее 1 мкм.

Капиллярная дефектоскопия применяется для проверки качества черных и цветных металлов, керамики, стекла, полимерных и других неферромагнитых материалов.

Все методы капиллярного контроля основаны на проникновении жидкости в полости дефектов и её адсорбировании или диффузии из них. При этом наблюдается разница в цвете либо свечение между фоном (цветом или свечением всей поверхности объекта) и участком поверхности над дефектом. Чем выше наблюдаемая разница, тем чувствительнее метод и тем меньший дефект может быть обнаружен.

Схема процесса включает в себя несколько этапов:

  • на контролируемую поверхность наносят жидкость с большой смачиваемой способностью (индикаторный пенетрант), предварительно добавив в неё в качестве индикатора люминесцирующую добавку (люминофор) либо краситель;
  • после проникновения жидкости во все сколько-нибудь значимые дефекты её излишки убирают с поверхности (время проникновения определяют по специальной формуле – при расчете учитывается поверхностное натяжение, угол смачивания, вязкость жидкости);
  • на следующем этапе наносится проявитель (порошок или белая краска) с высокой адсорбирующей способностью, вытягивающий из дефекта оставшуюся жидкость и окрашивающийся в яркий цвет в месте его расположения (при красочном методе), либо поверхность смачивается жидкостью с люминесцирующей добавкой, которая при облучении ультрафиолетовыми лучами начинает флуоресцировать.

Течеискание и капиллярный контроль позволяют решить следующие практические задачи:

  • как высокочувствительный метод НК, капиллярный контроль дает возможность установить наличие поверхностных дефектов в сварных швах, соединениях и основном металле, неопределяемых магнитопорошковым, визуально-измерительным методом;
  • определить сквозные и пористые течи, то есть участки нарушающие герметичность поверхности вследствие температурной деформации, превышения внутреннего давления, химического воздействия, коррозии металла/сварных соединений, износа или механического воздействия – выявляются методом течеискания с помощью индикаторных, пробных, балластных веществ.

Дефекты классифицируются на допустимые, недопустимые и возможно допустимые.

По результатам проведения неразрушающего контроля проникающими веществами оформляется технический отчет, включающий в себя:

  • Заключение о соответствии объекта проверки требованиям технической документации.
  • Копию свидетельства об аттестации лаборатории неразрушающего контроля.
  • Копию свидетельства об аттестации дефектоскописта.
  • Копию свидетельства о поверке прибора.
  • Технологические карты (по требованию заказчика).

Цена капиллярного контроля и проведения течеискания определяется с учетом следующих факторов:

  • применяемого метода;
  • стоимости расходных материалов;
  • параметров участка контроля;
  • количества обследуемых неразъемных соединений (сварных швов);
  • времени, необходимого для осуществления испытаний;
  • количества специалистов НК, привлекаемых к выполнению работ.
Цель проведения неразрушающего контроля проникающими веществами:
  • Установить соответствие объекта обследования требованиям нормативно-технической документации.
  • Дать качественную и количественную оценку поверхностных/подповерхностных дефектов, определив степень их потенциальной опасности.
  • Повысить уровень безопасности эксплуатации оборудования на промышленных объектах, отнесенных к категории особо опасных.
  • Обеспечить безопасную эксплуатацию ответственных трубопроводов и предотвратить вероятные аварии.
  • Своевременно выявить недопустимые дефекты конструкций на различных стадиях строительства зданий и сооружений.

Многие владельцы предприятий игнорируют периодические технические работы на производстве и совершенно напрасно! Износ оборудования, возникающий при его длительной эксплуатации, представляет собой существенный фактор аварийности и опасности для жизни людей. Для бесперебойной работы и избегания рисков внезапной остановки производства, рекомендуется периодически проводить дефектоскопию, вовремя обнаруживая дефекты и повреждения.

Передвижная лаборатория неразрушающего контроля «СК «ОЛИМП» – это:
  • Гарантия точности результатов измерений.
  • Полный комплект поверенного оборудования, сертифицированных материалов, калиброванных контрольных образцов необходимых для выполнения всех испытаний методами дефектоскопии с применением проникающих веществ в рамках области аттестации лаборатории. Средства измерения внесены в государственный реестр.
  • Наработанный годами опыт решения нестандартных задач неразрушающего контроля.
  • Компетентный персонал – сотрудники аттестованы на II и III уровень квалификации, стаж специалистов НК более 10 лет.
  • Обширная база постоянных клиентов, каждому из которых предоставляется скидка при следующем обращении или заказе других услуг компании.
В нашем активе вся разрешительная документация

Получите консультацию технического специалиста лаборатории или оформите заявку на проведение неразрушающего контроля проникающими веществами.
  • Отправьте сообщение на e-mail:info@olimpekspert.ru
  • Позвоните по номерам телефонов 8 (495) 132-41-42, 8 (800) 707-72-31 или закажите обратный звонок.

Дадим ответы на вопросы об услугах нашей передвижной лаборатории НК в Москве, согласуем простую схему взаимодействия и удобные для вас варианты оплаты.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector